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Article.

An Assessment of Landslide Susceptibility in Wadi Dil’ah Basin (KSA) by
Integrating GIS, RS, Bivariate Statistics and Artificial Machine Learning
Approaches

Dr. Waleed S. Yousuf
Department of Geography and GIS, Faculty of Arts, Assiut University, Assiut, Egypt.

Dr. Nermin A. Shoukry
Department of Geography, Faculty of Arts, Cairo University, Giza, Egypt.

Dr. Ahmed A. Ali
Department of Geography and GIS, Faculty of Arts, Assiut University, Assiut, Egypt.

ABSTRACT:

Landslide is a natural hazard that causes numerous casualties and property losses
worldwide. This study aims to produce landslide susceptibility maps by integrating GIS,
Remote Sensing, Machine Learning Artificial Neural Networks (ML-ANN) and Bivariate
Statistical {Frequency Ratio (FR), Shannon Entropy (SE)} approaches in Wadi Dil’ah basin
in the southwestern part of Saudi Arabia. A total number of 137 landslide sites were
identified using high-resolution satellite images, historical records, and field surveys. An
equal number of non-landslide sites (areas with a slope angle less than 2°) were selected and
divided into two groups; 70% were used for model training and 30% for model validation.
Eighteen landslide-related factor layers were selected and prepared to be examined,
including: Altitude, Slope-angle, Slope-aspect, Slope-length, Topographic Position Index
(TPI), Terrain Ruggedness Index (TRI), Landform patterns, General, Plan, and Profile
Curvature, Lithology, Distance from Fault, Topographic Wetness Index (TWI), Distance
from Stream, Rainfall, Land Use/Land Cover (LULC), Normalized Difference Vegetation
Index (NDVI), and Distance from Road. Moreover, the Variance Inflation Factors (VIF) and
Tolerance Level (TOL) indices were generated to detect and measure multicollinearity
assessment to avoid strong correlations among the factors. The relationships between the
landslide-related factors and the landslide inventory map were calculated by using ANN, FR,
and SE models. The Receiver Operating Characteristic (ROC) Curve and the Area Under the
Curve (AUC) were applied to assess the model performance. The results of the VIF and TOL
indices indicated no multicollinearity among the selected factors. The AUC values for the
training rates were 0.966, 0.955, and 0.953, while the testing rates were 0.983, 0.993, and
0.971 for the examined ANN, FR, and SE models, respectively. The resultant landslide
susceptibility maps (LSMs) were divided into five categories: very low, low, moderate, high,
and very high. The classification was accomplished by using the Natural Breaks (Jenks) tool.
The percentage for each landslide susceptibility category was calculated. The research final
results revealed that the performance of the ANN model was better than the FR and SE
models. Therefore, the ANN model is recommended as a suitable approach for applying
landslide susceptibility maps in the mountainous region. It is hoped that the findings of this
study will assist decision-makers and researchers in mitigating landslides and understanding
their dynamics.

Keywords: Landslide susceptibility mapping (LSM) - Artificial neural networks (ANN) -
Frequency ratio (FR) Shannon entropy (SE) - Landslides. GIS. Saudi Arabia.
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l. Introduction

Landslides are among the most destructive natural environmental hazards and
pose a significant risk to human life in mountainous regions (Ali et al. 2021). They are
recognized as a threat to human life, human activities, and various economic, social,
and political aspects, as well as natural resources (Bista, 2022; Wang et al. 2015).
Landslides are responsible for substantial losses in lives and property and hinder
social development (Cui et al. 2019; Khan et al. 2021). Additionally, they cause
damage to infrastructure, agricultural lands, and urban areas in various mountainous
regions worldwide (Li et al. 2020; Mondini et al. 2021).

The United Nations Development Program (UNDP) states that landslides rank
second among the most common geological hazards in the world, causing significant
financial losses annually (Pham et al. 2020). Approximately 66 million people live in
areas highly susceptible to landslides, and 17% of casualties in these regions are
attributed to landslides, which are recurrent disasters in mountainous areas (Achu et
al., 2022a, 2022b). The economic losses have amounted to about USD of 10.8 billion
from 1990 to 2020. These losses are expected to increase in the future due to the
growing urban expansion, economic development, and unusually high levels of
rainfall caused by climate change (Saha et al., 2021; Jakob, 2022; Li et al., 2022;
Naceur et al., 2022). However, these damages and losses can be mitigated through
effective planning and management (Rajakumar et al., 2007).

Landslides are defined as the downward movement of rock masses and debris
down slopes (Cruden et al., 1996), and occur due to natural phenomena or human
activities (Cruden et al., 1991; Shano et al., 2021). These causes include rainfall,
earthquakes, groundwater level changes, tectonic movements, the formation and
erosion of water channels, accelerated severe slope erosion, road construction,
deforestation, and mineral extraction (Gomez et al., 2023). These factors cause a rapid
increase in the stress borne by slope materials and a decrease in shear strength,
surpassing what is known as the triggering threshold, an indicator of slope instability
and the occurrence of landslides (Cardinali et al., 2002).

Additionally, human activities have a direct impact on the landscape, causing
changes in slopes due to urban expansion into areas with unstable slopes affected by
past landslides. Excavation and filling activities, as well as road construction, are
significant factors contributing to landslides. These activities alter the surface slope
during and after urban development in these areas (Farhan, 2002).

The southwestern region is considered one of the most important gateways to
the Kingdom of Saudi Arabia due to its strategic location, attracting significant
attention from the Saudi government. This region is characterized by its rugged
mountainous terrain, notably the towering Arabian Shield Mountains, which constitute
more than 70% of its area and receive a substantial amount of rainfall annually.
Consequently, numerous landslides have been recorded, triggered by various
mechanisms such as rainfall, earthquakes, and human activities (Youssef et al. 2022).

Therefore, landslides are among the most common phenomena in the
southwestern part of the Kingdom of Saudi Arabia, particularly along Asir Highlands
(Sarawat mountain range). This region is characterized by its steep scarps, and the
catchment areas are particularly susceptible to landslides due to intense rainstorms.
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The pace of development in this region has accelerated significantly, with the
establishment of numerous urban areas and infrastructure roads, escarpment roads,
tunnels, and highways throughout the mountainous areas. Given the geological
characteristics of this region, where numerous tectonic movements occur, many of
these rock formations become steep and structurally weak, leading to frequent
landslides and mass movements such as landslides and debris flows (Sidle et al.
2018). This poses serious threats to urban areas and the infrastructure that supports
transportation.

Landslide Susceptibility Assessment (LSA) is an important assessing
measurement in geological hazard research (Merghadi et al. 2020; Azarafza et al.
2021). It is considered as a significant value for studying the distribution of landslide
probabilities and understanding the relationship between landslides and the
environmental factors that cause them. Previously, there have been few attempts to
address landslide susceptibility in Saudi Arabia. However, with the increasing rate of
landslides in recent years, it is essential to raise awareness of the landslide problem
and work on reducing their impacts and/or preventing them to some extent through the
use of predictive models for landslide occurrence and assessing the factors that would
be contributed to them.

Remote sensing (RS) and geographic information systems (GIS) techniques are
effective and beneficial in mapping landslide susceptibility. By utilizing these
technologies, suitable and unsuitable areas for developmental activities can be
identified. Recently, with advancements in various software programs based on
Machine Learning Algorithms (ML) and Data Management (DM), numerous studies
have been conducted to map landslide susceptibility using machine learning
algorithms, including Artificial Neural Networks (ANN), Convolutional Neural
Networks (CNN), Random Forest (RF), Logistic Regression (LR), and Support Vector
Machines (SVM), along with other statistical models such as Frequency Ratio (FR)
and Shannon Entropy (SE), with the assistance of GIS and remote sensing
(Vayadande et al. 2024; Ganesh et al. 2022; He et al. 2023; Selamat et al. 2022; 2023;
Masruroh, 2023; Youssef, 2023).

However, these models produced varying results with different types of data
according to the selective study area by different researchers. The significance of this
study lies in the ability to map landslide susceptibility in the basin of Wadi Dil'ah area
of Asir in the southwestern (SW) region of Saudi Arabia, along Abha-Jazan Road,
relying on the selection of effective conditioning factors (Anis et al. 2019; Dam et al.
2022) and based on remote sensing and geographic information systems that
integrated with machine learning algorithms (ANN) and statistical models (FR - SE).
It is known that Abha-Jazan Road (Al-Dil'ah Pass) has suffered damage and
disruptions due to landslide occurrences, especially following heavy rainstorms,
particularly during the rainy season when sudden floods lead to rock falls along cracks
or create debris flows of sedimentary materials accumulated along drainage networks.
Therefore, the results of this study can assist planners and decision-makers in
identifying areas prone to landslides to mitigate their risks in the study area.
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1. Description of the Study Area:

Wadi Dil'ah basin (the study area) is located in Asir region in the southwestern
part of Saudi Arabia, south of Abha City. It extends between the latitudes of 18° 12'
25" N and 17° 54' 11" N, and the longitudes of 42° 25' 44" E and 42° 35' 25" E (Fig. 1
left). Wadi Dil'ah basin is approximately 33.817 km long and 12.378 km wide,
covering an area of 283.2 km2. The study area falls within the Arabian Shield. Wadi
Dil'ah basin is one of the sub-basins of Etwid Wadi in Asir region. Wadi Dil'ah flows
from the Sarawat Mountains towards Tihamah plain in a southwest direction and
continues in this direction until it meets the lower Etwid Wadi. Moreover, Wadi Dil'ah
basin is characterized by its rugged topography, especially in its upper basin, with the
highest elevation peak reaching 2,661 meters above sea level, while the lowest
elevation being 415 meters above sea level.

Wadi Dil'ah takes on a triangular shape, with a Form Factor of 0.21 (Horton,
1945). Several important roads pass through the study area, including Dali‘ah
escarpment, which connects various villages within the region (Fig. 1 right) and links
to other major cities such as Abha, Jizan, and El-Drab. The slope angles range from 0
to 66.3 degrees. The climate of the study area is moderate, with summer temperatures
not exceeding 30 degrees Celsius, while winter temperatures tend to be cooler,
reaching around five degrees Celsius in the highlands. Wadi Dil'ah is one of the most
significant sub-valleys of Wadi Etwid, rich in the amounts of water flowing through it
or stored within it. It receives rainfall in the form of intense storms between March
and May, with average monthly precipitation of 29.5 mm in March, 46.5 mm in April,
and 64 mm in May. It is worth noting that the southwestern mountainous region where
the study area is located has experienced numerous unprecedented rainstorms across
the Saudi kingdom, with these rains increasing in intensity, duration, and frequency,
resulting in various forms of widespread destruction (Abu Abdullah et al. 2020).

2. Data Sources and Types

Several sources were used to produce different types of data. This data includes
information from historical records, reports from the Civil Defense Department, the
Ministry of Transport, and agencies responsible for road maintenance in Asir region,
along with field studies (data collected over different periods from the local
population between 2013 and 2019).

Data sources also included high-resolution satellite images (GeoEye images
with a spatial resolution of 0.5 meters, obtained from King Abdul-Aziz City for
Science and Technology (KACST), and Google Earth Professional images with an
approximate spatial resolution of one meter) and Landsat 8 (OLI) images with a
spatial resolution of 30 meters (Landsat 8 satellite image Path 167 Row 048 Scene
Identifier LCO8_L2SP_167048 20230410, Acquisition Date: 10-04-2023, obtained
from the United States Geological Survey USGS earth explorer website (https:// earth
explorer. usgs. gov/).

This aided in identifying land use/land cover patterns. The study also utilized
Band 5 (Near Infrared) and Band 4 (Red Band) to derive the Normalized Difference
Vegetation Index (NDVI) values for the study area. The data included the ALOS-
PALSAR digital elevation model with a resolution of 125 meters
(https://search.asf.alaska.edu/#/), which was useful in deriving various parameters,
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Fig. 1 Study area map with Landsat-8 false-color composite image RGB (5,4,2).

including elevation, slope angle, slope aspect, slope length, Topographic Position
Index (TPI), Terrain Ruggedness Index (TRI), Terrain Wetness Index (TWI),
landform types, general, plan, and profile curvature, as well as the drainage network.
Geological and topographic maps were scanned and then georeferenced within
ArcMap interface in ArcGIS software. Following this, a database was constructed and
built within the Arc Catalog environment. This was followed by the digitization
process, which converted the maps from their paper format to digital format while
establishing a uniform datum and projection system, specifically
WGS 1984 UTM_Zone 38N. Geological formations and faults were digitized from
the geological maps at a scale of 1:250,000 issued by the Ministry of Petroleum and
Mineral Resources, specifically Wadi Baysh (GM-77) and Abha (GM-75) quadrangle
geological maps, which were obtained from the Saudi Geological Survey database.
The road network in the study area was also digitized from the topographic
map at a scale of 1:250,000 published by the Aerial Survey (A.S) Department of the
Ministry of Petroleum and Mineral Resources, particularly Sabya Sheet (NE36-9) and
Abha Sheet (NE36-5). Additionally, road data were downloaded from the website
(https://lwww.openstreetmap.org/export) to update the road network derived from the
topographic maps. Distance layers to roads, faults, and waterways were derived in
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raster format using the Euclidean Distance Tool in ArcGIS. Furthermore, additional
data was derived from the annual surface information report issued by the National
Center for Meteorology on average rainfall from 2012 to 2021 at Abha, Al-Soudah,
Tamniah, and Al-Drab stations were used to derive a raster format layer for rainfall
distribution. Finally, some landslide locations were surveyed using a Global
Positioning System (GPS) in the study area.

Il. Literature Review

The literature review of this research provides the necessary background of the
variation of some essential studies of landslides that were carried out by many
researchers and analysts that utilized different methods and techniques in various
geographically mountainous areas and regions. Moreover, it sheds light on the various
statistical and technical combination models that could be used and applied in this
new field of study. World widely, it appears that about 1.3% of destructive natural
disasters occurred and existed from landslide, with Asia accounting for about 54% of
this phenomena (Khalig, et al., 2022; Shahabi, et al., 2023). However, it is directed
toward some selective researches that were applied generally in Asia and particularly
in Saudi Arabia.

In 2015, a study of delineating landslide susceptibility (LS) was applied by the
geologist "Ahmed Youssef" in Ar-Rayth mountainous area in Jizan (KSA). He used
an Analytical Hierarchy Process (AHP) that infused with both Frequency Ratio (FR)
and Logistic Regression (LR) models. A land inventory map was constructed of all
landslides locations based on many data sources along with the proposed causative
factors' weights in the study area. The study ends with producing three susceptibility
maps indicating the preference usage of LR model for landslides studies (Youssef, A.,
2015). Additionally, another study of the former author in the same year is
accomplished to map landslide susceptibility in another different mountainous area in
Jizan (KSA). It was conducted by using GIS-based frequency ratio and index of
entropy models. The study area was delineated as "Al-Hasher" area that is located NE
Jizan City. In this paper, the (FR) and Index of Entropy statistical models were
experienced along with the aid of GIS tools and remote sensing data. Landslide
Susceptibility Maps (LSMs) were produced by achieving nearly a value of 0.7 in both
models, respectively (Youssef, A., et al., 2015a). Moreover, Youssef and three other
researchers assessed landslide susceptibility in Wadi Jawrah basin that is located in
the Jizan region, SW KSA. He utilized different types of data sources that depends
more on geological structures and variables for the selected influence factors. In this
study, he concentrated on evaluating two bivariate statistical approaches, the (FR) and
Weights-of-Evidence (WoE) to produce and assess the final LSMs. His final results
revealed that both experimented models produced reasonable accuracy (Youssef, A.,
etal., 2015b).

In 2019, an assessment study of LS in Mazandran Province (lran) is
accomplished by using an integration method of two statistical models. The first is FR
and the second is Random Forest (RF) that were infused in satellite ASTER and
SRTM DEMs data. The main advantage of this research methodology is the capability
of determining the relative importance of effective factors and enlighten the spatial
relationship between these factors and landslides locations (Arabameri, 2019).
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Another Landslide Susceptibility Mapping (LSM) study in the northern part of Iran to
compare four bivariate statistical models: FR, SE, WoE, and Evidential Belief
Function (EBF). The research ends with a final result of recommending the usage of
WOoE model in the study area that achieved the highest AUC value indicating the
highest accuracy (Nohani, 2019).

In 2021, a geological/geophysics study of LSA and its impacts on the urban
expansion of Makkah Al-Mukarramah (KSA). The data were processed and analyzed
using the Horizontal-Vertical Spectral Ratio (HVSR) method to gain the resonance
frequency and H/V amplification factor. The study ends with recommending the usage
of microtremor measurements as an effective technique in locating the sites that suffer
from landslides (Abdelrahman, et al., 2021). In a study area of Al-Fawar basin (Syria),
an assessment of LSM zonation was applied. The study used bivariate statistics of FR
model and Statistical Index (SI) model with utilizing 13 dominant factors (Abdo,
2022).

In 2023, a study to produce a LSM for Al-Hada Mountainous terrain of
Makkah province in Saudi Arabia, a usage of GIS and RS tools only were a dominant
research methodology without infusing any statistical approach. A GIS-based
weighted overlay analysis along with a remotely sensed data were applied. Selective
eight raster format layers work as conditioning factors are processed. The study lacked
of measuring an accuracy assessment for the produced final map and it is not working
for regions with small-scale landslides (Alharbi and EI-Sorogy, 2023). Another study
to produce a LS evaluation that based on remotely sensed, geological, and
seismological data to be infused with moicrotremor measurements of Al-Taif urban
area in Saudi Arabia. The study offered a recommendation stating that the
microtremor measurements give a thorough method for assessing landslides. It
expedites landslide analyses and lowers the initial expenses of numerical
computations with a significantly high accuracy (Abdelrahman, et al., 2023).

Furthermore, a recent study offers a new methodological approach to generate
LSMs by assessing the efficiency of applying three conventional Machine Learning
Algorithms (MLAS) including RF, Decision Tree (DT), and Support Vector Machine
(SVM), utilizing 14 influential factors. The study area is located in Iran's western
Kurdistan province and resulted of showing that DT, RF, and SVM have respective
prediction rates of 0.94, 0.82, and 0.75 (Shahabi, et al., 2023). Finally, another recent
study offers a new methodological approach to handle the LS Mapping in different
perspective. The study area is located in Chattogram (Bangladesh). Its incorporated
GI1S-based machine learning algorithms of Logistic Regression (LR) with RF and
Decision & Regression Tree (DRT) models. Sixteen landslide conditioning factors
were determined and experimented. Three LSMs for the three models were produced
and accuracy assessed to obtain a final accuracy of LR, RF, and DRT models were
0.94, 0.91, and 0.95, respectively (Chowdhury, S., et al., 2024).

I11. Research Methodology

The mentioned above material of data sources with their diverse types are
significantly contributed to apply intelligent algorithm methods such as Machine
Learning-Artificial Neural Networks (ML-ANN) algorithms and Bivariate Statistical
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models in mapping landslide susceptibility. The overall methodology of the study is
presented in (Fig. 2). Methodologically, the study followed several key stages:

1.

2.

3.

Data Sources and Data Input: Identification of various data sources used to
create the landslide susceptibility map.

Selection of Landslide Conditioning and Indicator Factors: Choosing the
factors contributing to landslide occurrences.

Creating Landslide Inventory Map: Selection of random samples with 70% of
training and 30% of testing samples of landslide sites.

Testing Multicollinearity: Assessing Multicollinearity before building the
predictive models.

Modeling Techniques: Application of the suggested modeling techniques (FR,
SE, and ML-ANN) to create landslide susceptibility maps (LSMs).

Verification and Testing: Conducting ROC-AUC tests to evaluate the accuracy
and performance of the suggested predictive models.

Data Outputs and Final Results.

ALOS-PALSAR. \
: Dem12.5m Ministry of Petroleum and Mineral *Reports

® Landsat-8 (OLI) 30 m. Resources & A.S Department .churr.gn‘-s-
*GeoEye 0.5m. hittps://www.openstreetmap.org/export ® Questionnaires

eField survey
*Google Earth

Landslide
Inventory Map

v
{ Randem Selection\;

l A 4

Training 70% | | Testing 30% ‘

Model validation

Fig. 2 Research schematic flowchart showing proposed methodology to predict the final

outputs of Land Susceptibility Maps (LSMs) of the study area.
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V. Processing and Analyses

1. Landslide Inventory Map

The preparation of landslide inventory data is a crucial step in the landslide
modeling process to build an accurate and effective prediction model for landslides
(Lee et al. 2020). This is because there is an assumption that past events have a strong
influence on the future (Zhou et al. 2018). Thus, landslide inventory maps can provide
useful information regarding the locations of past landslides and may also identify
areas where future landslides are likely to occur (He et al. 2023).

With the assistance of remote sensing technologies and field investigations,
inventory maps can be evaluated more effectively. Based on a comprehensive analysis
of various datasets, including historical documents, field surveys, interviews with
some local residents in the study area, and the interpretation of high-resolution
satellite imagery, a landslide location map was created.

In this study, the data for spatial prediction was classified into two categories:
the first category is landslide locations, for which 137 total landslide sites were
identified for each of training and testing samples (back to Fig. 1 right) to be used in
building the predictive model for landslide susceptibility (Phong et al. 2020; Azarafza
et al. 2021). The second category is non-landslide locations, where an equal number of
sites that have not experienced landslides (areas with a slope angle of less than 2°)
were identified.

Using ArcGIS Desktop software verl0.5 and the Geostatistical Analyst
extension, the data was randomly divided into training datasets 70% of landslides (96
locations of landslides and 96 locations of non-landslides) to build the landslide
susceptibility models. The remaining 30% (41 locations of landslides and 41 locations
of non-landslides) were used as testing data to evaluate the model (back to Fig. 1
right).

The training and testing datasets were converted into a raster format. The
landslide and non-landslide locations were coded with the numbers 1 and O,
respectively (Chen et al. 2019). Finally, the training dataset was overlaid with the
conditioning factors that had been prepared in advance to extract the descriptive
values for each factor.

2. Selection of Landslide Conditioning Factors

Landslides occur as a result of the influence of a set of selected factors, which
serve as inputs for creating susceptibility maps for any region. In this study, eighteen
landslide conditioning factors were extracted, categorized into topographical,
geological, hydrological, environmental and anthropogenic factors, to evaluate the
spatial prediction of landslides in the study area.

The selected factors include several continuous variables (altitude, slope angle,
slope aspect, slope length, Topographic Position Index (TPI), Terrain Ruggedness
Index (TRI), Topographic Wetness Index (TWI1), general curvature, plane curvature,
profile curvature, lithology, rainfall, NDVI), while others are categorical variables
(LULC, distance from streams, distance from roads, distance from faults,
geomorphological landform patterns) (Table 1; Fig. 3, 4, and 5). Below is a
description of these factors on details:
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Table 1: Spatial relationship between each conditioning factor and landslide occurrence

using FR and SE models

Conditioning

Class

Landslide

factors Classes pixels Pixels (%) landslide pixel % FR RF=P; W, rr P; W, s
< 500 4042 0.20 0 0.00 0.000 0.000 0.000
500 - 1000 128693 7.10 41 29.90 4214 0.663 -0.361
Altitude 1000 - 1500 479399 26.50 34 24.80 0.938 0.148 2917 -0.346 0037
1500 - 2000 748666 41.30 54 39.40 0.954 0.150 -0.367
2000 - 2500 430853 23.80 8 5.80 0.246 0.039 -0.166
> 2500 (m) 20582 1.10 0 0.00 0.000 0.000 0.000
0 - 2 (degree) 15182 0.80 0 0.00 0.000 0.000 0.000
2-5 32233 1.80 0 0.00 0.000 0.000 0.000
5-10 91325 5.00 0 0.00 0.000 0.000 0.000
Slope angle 10-18 273172 15.10 0 0.00 0.000 0.000 4174 0.000 0.070
18- 30 800952 44.20 6 4.40 0.099 0.003 -0.137
30-45 578802 31.90 77 56.20 1.760 0.048 -0.324
45 - 67 20569 1.10 54 39.40 34.728 0.949 -0.367
Flat 6485 0.40 0 0.00 0.000 0.000 0.000
North 180717 10.00 6 430 0.844 0.101 -0.157
Northeast 201093 11.10 21 15.30 1.381 0.164 -0.287
East 231694 12.80 51 37.20 2912 0.346 -0.368
Slope-Aspect Southeast 240987 13.30 26 19.00 1.427 0.170 1.523 -0.315 0.027
South 243265 13.40 5 3.60 0.272 0.032 -0.121
Southwest 296872 16.40 10 7.30 0.446 0.053 -0.191
West 236572 13.10 12 8.80 0.671 0.080 -0.213
Northwest 174550 9.60 6 4.40 0.455 0.054 -0.137
0-5 (m) 1634013 90.20 91 66.40 0.737 0.048 -0.272
5-15 84681 4.70 19 13.90 2.968 0.195 -0.274
slope length 15-30 66551 3.70 20 14.60 3.975 0.261 1.000 -0.281 0.046
30-45 23836 1.30 6 4.40 3.330 0.219 -0.137
> 45 3154 0.20 1 0.70 4.194 0.276 -0.036
<-50 358142 19.80 3 2.20 0.111 0.018 -0.084
-50:-10 497711 27.50 15 10.90 0.399 0.065 -0.242
TPI -10:30 437014 24.10 33 24.10 0.999 0.164 1.977 -0.343 0.016
30:70 305721 16.90 40 29.20 1.731 0.284 -0.359
>70 213647 11.80 46 33.60 2.848 0.468 -0.366
< 0.04 1493161 82.40 34 24.80 0.301 0.010 -0.346
0.04 - 0.08 280600 15.50 75 54.70 3.536 0.115 -0.330
TRI 0.08 - 0.12 35384 2.00 24 17.50 8.972 0.291 2,573 -0.305 0.040
0.12-0.16 2929 0.20 4 2.90 18.065 0.585 -0.103
> 0.16 161 0.00 0 0.00 0.000 0.000 0.000
Pit 53621 3.00 0 0.00 0.000 0.000 0.000
valley 207513 11.50 0 0.00 0.000 0.000 0.000
footslope 831 0.00 0 0.00 0.000 0.000 0.000
shoulder 339 0.00 0 0.00 0.000 0.000 0.000
landform
patterns hollow 354788 19.60 0 0.00 0.000 0.000 2.189 0.000 0.078
spur 320962 17.70 5 3.60 0.206 0.020 -0.121
Peak 10459 0.60 4 2.90 5.059 0.498 -0.103
Ridge 118520 6.50 28 20.40 3.125 0.307 -0.325
Slope 745202 41.10 100 73.00 1.775 0.175 -0.230
\YY
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Table 1: Continued.
Conditioning Classes qass Pixels (%) landslide Lar?dslide FR RF=P; W, = P; W, s
factors pixels pixel %
Flat 346415 19.10 10 730 0382 0142 0.191
Ci‘::;fr'e Convex 724946 40.00 95 69.30 1733 0645 2212 -0254 0035
Concave 740874 4090 2 23.40 0571 0213 -0.340
Flat 146883 8.10 0 0.00 0.000  0.000 0.000
Cu:'/aart‘ure Convex 848390 46.80 85 62.00 1325 0612 2689 -0296 0048
Concave 816962 4510 52 38.00 0842 0388 -0.368
A Flat 107663 5.90 0 0.00 0.000  0.000 0.000
Cf:fjl'jre Convex 881894 4870 38 27.70 0570 0264 3238  -0356  0.056
Concave 822678 45.40 99 72.30 1592 0736 0235
Sabya Group (sa) 265542 1270 0 0.00 0000 0.000 0.000
Jiddah Group (jt) 7892 040 0 0.00 0000  0.000 0.000
Lithology Baish Group (ba) 155800 8.60 0 0.00 0000 0000 4398 0000 0122
Bahah Group (bt) 1358039 74.90 137 100.00 1334 1.000 0.000
Sabya Group (sa) 24962 1.40 0 0.00 0000  0.000 0.000
0- 750 (m) 686984 37.90 12 81.80 2157 0.705 0.000
750 - 1500 486738 26.90 20 14.60 0544 0178 0.000
, 1500 - 2250 301717 16.60 2 1.50 0088 0029 -0.036
D'StaFr;cjt‘;rom 2250 - 3000 183312 10.10 2 1.50 0144 0047 3100 -0062 0084
3000 - 3750 103700 5.70 1 0.70 0128 0042 -0.062
3750 - 4500 44669 2.50 0 0.00 0.000  0.000 -0.281
> 4500 5115 030 0 0.00 0000  0.000 -0.165
<4 314494 17.40 105 76.60 4416 0919 ~0.204
45447 1082456 59.70 32 23.40 0391  0.081 -0.340
TWI 45510 305013 16.80 0 0.00 0000 0000 4040 0000 0080
45573 60650 330 0 0.00 0.000  0.000 0.000
> 10 49622 2.70 0 0.00 0000  0.000 0.000
0-100 561955 31.00 28 20.40 0659  0.119
100 - 200 457820 2530 44 32.10 1271 0230 0.000
. 200 - 300 355886 19.60 36 26.30 1338 0242 -0.062
D'Stsz’t:'::nf:m 300 - 400 234292 12.90 21 1530 1186 0214 1064  -0137 0026
400 - 500 141133 7.80 6 440 0562 0102 -0.287
500 - 600 51540 2.80 2 1.50 0513 0093 0351
> 600 9609 0.50 0 0.00 0000  0.000 -0.365
200 - 250 (mm) 17812 7.00 0 0.00 0000 _ 0.000 0.000
fainfall 250 - 300 254437 14.00 9 6.60 0468 0176 o 0179
300 - 400 783645 4320 72 52.60 1215 0456 -0.338
400 - 500 756341 4170 56 40.90 0979 0368 -0.366
Built up area 61223 3.40 1 0.70 0216 0.087 ~0.036
Ll Roads 89753 5.00 4 2.90 059 0238 .. 0103 .
Vegetation 555154 30.60 8 5.80 0191 0077 -0.166
Bare ground 1106105 61.00 124 90.50 1483 0598 -0.090
~0.0214 - 00717 377596 20.80 35 25.50 1226 0320 20.349
0.0717 - 0.0906 637563 35.20 69 50.40 1432 0373 -0.345
NDVI 0.0906 - 0.1109 424058 23.40 30 21.90 0936 0244 1534 -0333 0037
0.1109 - 0.1365 285094 1570 2 1.50 0093 0024 -0.062
0.1365 - 03229 87924 490 1 0.70 0150  0.039 -0.036
0-1000 (m) 547384 30.20 97 66.40 2199 0586 0.000
1000 - 2000 437370 24.10 35 25.50 1059 0282 0.000
. 2000 - 3000 338536 1870 8 5.80 0313 0083 0.000
d'StaR”:: dfsr°m 3000 - 4000 216512 11.90 3 220 0183 0049 2576  -0.084 0067
4000 - 5000 126535 7.00 0 0.00 0000  0.000 -0.166
5000 - 6000 89032 490 0 0.00 0000  0.000 -0.349
> 6000 56866 3.10 0 0.00 0000  0.000 0272
yYY
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Fig. 3. Landslide conditioning (Topographical) factors: (a) Altitude, (b) Slope angle, (c)
Slope-Aspect, (d) Slope Length (LS), (e) Topographic Position Index (TPI), (f) Terrain

Ruggedness Index (TRI).
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Fig. 4. Landslide conditioning (Topographical & Geological) factors: (a) landform Patterns,
(b) General Curvature, (c) Plan Curvature, (d) Profile Curvature, (e) Lithology, (f) Distance
from Fault.
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Fig. 5. Landslide conditioning (Hydrological & Environmental) factors: (a) Topographic
Wetness Index (TWI), (b) Distance from streams, (c) Rainfall, (d) Land use/land cover
(LULC), (e) Normalized Difference Vegetation Index (NDVI), (f) Distance from roads.
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2.1. Topographical Factors

2.1.1. Altitude

Altitude is one of many topographical factors that influence slope stability and,
consequently, leads to landslides (Hong et al., 2018; Feizizadeh et al. 2014). In this
study, altitude values ranged from 415 to 2661 meters above sea level. This altitude
was categorized into six classes: (415 - 500), (500 - 1000), (1000 - 1500), (1500 -
2000), (2000 - 2500) meters, and (> 2500 m), as illustrated in (back to Fig. 3a).

2.1.2. Slope Angle

The slope angle is one of the most influential factors in landslide assessments
(Hong et al., 2018; Nguyen et al., 2019), with landslides occurring more frequently on
steeper slopes (Poudel et al., 2016). Areas susceptible to landslides are characterized
by steep slopes that contribute to the instability of the underlying rock and soil (Jebur
et al., 2014). Additionally, slope plays a vital role in subsurface flow and affects soil
moisture, which is directly related to landslide occurrence. In this study, slope degree
values ranged from O to 66.3 degrees, and the slopes were classified into seven
categories according to Young's classification (Young, A., 1972) (back to Fig. 3b).

2.1.3. Slope Aspect

The slope aspect refers to the direction of maximum change in value from each
cell to its neighbors (Al-Najjar et al., 2019). It is also one of the most important
factors influencing landslide occurrence due to the varying moisture levels across
different aspects (Pham et al., 2018). The slope aspect affects various processes that
have direct and indirect impacts on landslides, including wind direction, rainfall,
sunlight exposure, hydrological processes, evaporation, transpiration, soil moisture
concentration, and vegetation cover (Devkota et al., 2013). Furthermore, the slope
aspect significantly influences the distribution of landslide types. In this study, a raster
layer indicating the slope aspect of the study area was derived from a 12.5-meter
Digital Elevation Model (DEM) and classified into nine categories with values: (-1),
(0-22.5 degrees, 337.5-360 degrees), (22.5-67.5 degrees), (67.5-112.5 degrees),
(112.5-157.5 degrees), (157.5-202.5 degrees), (202.5-247.5 degrees), (247.5-292.5
degrees), and (292.5-337.5 degrees) representing flat, north (N), northeast (NE), east
(E), southeast (SE), south (S), southwest (SW), west (W), and northwest (NW),
respectively (back to Fig. 3c).

2.1.4. Slope Length (LS)

The slope length; sometimes Length of Slope (LS) is also one important
topographical factors influencing landslide susceptibility. Slope length, in conjunction
with slope angle, affects soil loss and hydrological processes in mountainous areas
(Pourghasemi and Rahmati, 2018). In the current study, the LS factor was derived
from the Digital Elevation Model (DEM) using the SAGA software according to the
following equation (Eq. 1) (Moore and Burch, 1986). In this study, the LS values
range from 0 to 312.27 meters and were classified into five categories as follows:
(>45), (30-45), (15-30), (5-15), and (0-5) (back to Fig. 3d).
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0.4 - 1.3
IS— A Sinf E0.1)
22.13 0.0896

where, As (m?) is specific catchment area and / is in degree.

2.1.5. Topographic Position Index (TPI)

Topography is defined as specific geomorphological features on the earth's
surface, ranging from large-scale features such as plains and mountain ranges to
secondary features like hills and valleys (Jenness, 2010). Weiss and Jenness
introduced a new application in Geographic Information Systems for the automated
classification of topography known as the Topographic Position Index (TPI) (Weiss,
2001; Jenness, 2006). This index determines the position of a point within the context
of its surrounding topography, indicating whether the point is in a valley, on a ridge,
or on a slope.

Since the establishment of the Topographic Position Index (TPI) by Weiss and
Jenness, the TPI has been used at various levels to classify landscapes into both slope
position categories: (valley, lower slope, flat slope, typical slope, model slope, upper
slope, ridge, hill) and landform categories: (channels/gorges, drainage, upland
drainage, high drainage, shallow valleys, U-shaped valleys, plains, canyons / deeply
incised streams, mid-slopes, open slopes, upper slopes, open slopes, local hills, hills in
valleys, middle hills, small hills in the plain, plains, mountain peaks , local ridges,
mid-slope ridges and high ridges) (Jenness, 2007). The Topographic Position Index
(TPI) provides useful information about the landscape's topographic features that are
used to assess landslide risks. The Topographic Position Index (TPI) can be calculated
by using the following equation (Eq. 2):

— (Eq. 2)
TPI, = z, — 22

n
Where;
z( = elevation of the model point under evaluation Zn = elevation of grid within the local window
n = the total number of surrounding points employed in the evaluation.

SAGA GIS was used to calculate the TPI, and the values of the index ranged from (-
157.64 to 208.95). These values were classified into five categories as follows: (< -
50), (-50 to -10), (-10 to 30), (30 to 70), and (> 70). (back to Fig. 3e)

2.1.6. The Terrain Ruggedness Index (TRI)

It is used to describe the terrain as either smooth or rugged, as well as the local
variation in slopes or surface curvature (Dahal et al. 2008). TRI is also defined as the
difference in elevation between adjacent pixels (Al-Najjar and Pradhan 2021). Terrain
Ruggedness Index was calculated by using the following equation (Eq. 3):
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|Zisa,16—Ziil (Eq. 3)
TRI=3%, 3— 5

Where is the elevation of the cell, and o and f are the indices representing the cell and
its eight neighboring cells (Riley et al. 1999).

The TRI values were derived using SAGA GIS, and the TRI was divided into
five categories as follows: (0-0.04), (0.04-0.08), (0.08-0.12), (0.12-0.16), and (>0.16)
(back to Fig. 3f). The geomorphology of the area affects the occurrence of landslides,
and it is taken into account in many sensitivity studies such as monitoring wildfires,
landslide susceptibility, or hydrology (Pham et al., 2019).

2.1.7. The Geomorphological Landform Patterns

Recently, the landform patterns are classified using an innovative method
introduced by Jasiewicz and Stepiski (2013) known as Geomorphic; this algorithm
classifies landscapes by categorizing 498 unique geomorphological patterns based on
elevation differences within the area surrounding the target cell (Fig. 6). In this study,
the geomorphic algorithm integrated into SAGA GIS was used to classify landform
patterns into 10 different landform types, outputting them in raster format as follows:
Flat, Peak, Ridge, Shoulder, Spur, Slope, Hollow, Foot slope, Valley, and Pit
(Depression) (Jasiewicz and Stepiski, 2013) (back to Fig. 4a).

2.1.8. Curvature (General, Plan, and Profile)

General, Plan, and Profile Curvature are fundamental terrain variables that have
a direct impact on the acceleration and deceleration of surface runoff and the
deposition of materials by managing the speed of material movement on a slope (Xiao
et al., 2019; Aghdam et al., 2016). This, in turn, affects the occurrence of landslides
(Pham et al., 2018).

In this study, the layers for General, Plan, and Profile Curvature were derived
from the DEM using ArcGIS Verl0.5 software. The curvatures were classified into
three categories: negative curvature (Concave) (<-0.05), zero curvature (Flat) (-0.05 to
0.05), and positive curvature (Convex) (>0.05) (Nohani et al., 2019). The values for
General Curvature ranged from (-23.04 to 17.92), Plan Curvature from (-10.2336 to
10.6918), and Profile Curvature from (-10.5108 to 12.9354) (back to Fig. 4b, ¢ & d).
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Fig. 6. A Geomorphic line of sight concept. Symbolic 3D morphologies and their
corresponding Geomorphic (ternary patterns) for the 10 most common patterns found in
nature. Figure after Jasiewicz and Stepinski (2013).
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2.2 Geological Factors

2.2.1. Lithology

Lithology is the primary factor that directly influences the development of
landslides in a specific area (Abedini et al., 2019; Tian et al., 2019) and contributes to
the mapping of landslide susceptibility. Variations in lithology significantly impact

different types of geographical hazards, such as landslides (Mekonnen et al., 2022).

These geological units differ in physical and mechanical properties, including type,

strength, weathering degree, durability, density, and permeability (Shano et al., 2021).

Many researchers have used lithology in landslide studies (Dang et al., 2019; Panchal

& Shrivastava, 2020, 2021, 2022). However, it requires understanding the nature of

rock types to identify those that allow water storage in pores, which act as landslide

factors (Jennifer et al., 2021). In the current study, five geological groups were
identified as follows (back to Fig. 4e):

a. Sabya Group (SA): it consists mainly of Quartz-bearing meta-sedimentary rocks
consisting of quartzite, quartz pebble conglomerate, argillite, limestone, and
graywacke; widely converted to micaceous schist.

b. Baish group (BA): which consists of Greenstone, tholeiitic meta basalt (local
pillow structures), and minor. metagraywacke, meta chert, and marble.

c. Bahah group (BT): it consists mainly of Biotite-quartz schist, phyllite, and
calcareous metagraywacke.

d. Jiddah Group: (JT): which consists of pillow lava, flow breccia, tuff, dacite tuff,
interbedded subordinate, often lava carbonaceous conglomeratic gray wacke and
phyllite.

e. Granite group (DG): which consists Biotite monzogranite with diorite, gabbro,
Foliated uniform body of biotite granodiorite and monzogranite.

2.2.2. Distance from Faults

Geological variables such as lineaments and faults play a crucial role in the
occurrence of landslides and are considered when analyzing landslide susceptibility
because they affect rock stability and encourage landslides (Arabameri et al., 2020).
Faults have a significant impact on landslides and slope stability because rocks near
these structures are often fractured, broken, and weathered, resulting in much lower
engineering properties compared to intact rocks (Miller et al., 2009).

In this study, faults were extracted from the geological map (scale: 1: 250,000).
The distance to faults was calculated using the Euclidean distance function in ArcGIS
10.5. The maximum distance to faults was found to be 4934 meters. The distances
from faults were classified into seven categories: (0 - 750), (750 - 1500), (1500 -
2250), (2250 - 3000), (3000 - 3750), (3750 - 4500), (> 4500) (back to Fig. 4f).

2.3. Hydrological Factors

2.3.1. Topographic Wetness Index (TWI)

The Topographic Wetness Index (TWI) is a function of both the slope and the
contributing area per unit orthogonal to the flow direction. It is an indicator that
identifies water-saturated areas resulting from runoff under topographic conditions
(Mitra et al., 2022). Low TWI values are typically associated with steep slopes and
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efficient drainage systems, while high TWI values indicate high surface saturation
with gentle slope angles. Increased surface saturation raises the risk of landslides and
reduces the shear strength of materials on slopes (Zhao and Chen, 2020).

In our current study, TWI values were calculated using SAGA GIS with the
following equation (Eqg. 4) (Roy and Saha, 2019). The TWI values ranged from
1.75689 to 23.8445 and were classified into five categories: (< 4), (4 - 6), (6 - 8), (8 -
10), (> 10) (back to Fig. 5a).

TWI =1n (Eq. 4)

tan f#

where a is the confluence area per contour length, tang is the local slope.
In addition, TWI increases with the increase of runoff accumulation.

2.3.2. Distance from Streams

Previous studies have indicated a relationship between drainage density and
factors such as climate, soil, slope, and geological composition (Nohani et al., 2019).
Terrain with high drainage density and thin soil layers is typically prone to shallow
landslides (Paul and Bhowmik, 2016). Additionally, many researches stated that about
65% of landslides occurred near the first-order drainage network within a distance that
range from zero to 40 meters. Proximity to watercourses is a crucial factor in mapping
landslide susceptibility and has been widely used in landslide susceptibility studies
(Abedi & Feizizadeh, 2021; Moragues et al., 2021; Shano et al., 2021).

In this study, the drainage network was derived from the ALOS-PALSAR
digital elevation model using ArcGIS 10.5 with the Hydrology extension. The
distance from major streams was calculated using the Euclidian distance function in
ArcGIS 10.5, with the maximum distance to streams being 814.9 meters. The
distances from streams were classified into seven categories: (0 - 100 meters), (100 -
200 meters), (200 - 300 meters), (300 - 400 meters), (400 - 500 meters), (500 - 600
meters), (> 600 meters) (back to Fig. 5b).

2.3.3. Rainfall

Rainfall is another significant factor influencing the occurrence of landslides
due to its direct impact on the stability of surface slopes in a given area (Jennifer et al.,
2021). Moreover, heavy rainfall, whether short-term or long-term, controls surface
runoff and activates pore water pressure in the soil, leading to soil weakening and
destabilization of the terrain (Jennifer et al., 2021). Numerous researchers have
incorporated rainfall data in landslide studies, demonstrating it as a crucial factor in
landslide occurrences (Gheshlaghi and Feizizadeh, 2021; Hong et al., 2018; Jennifer et
al., 2021).

In this study, a raster layer representing rainfall distribution was derived using
ArcGIS version 10.5 and the spatial interpolation tool. (IDW) Interpolates a raster
surface from points using an inverse distance weighted (IDW) technique (back to Fig.
5c).
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2.4. Environmental and Anthropogenic Factors

2.4.1. Land Use/Land Cover (LULC)

Human activities such as road construction, urban expansion, and infrastructure
development significantly impact landslides as they alter land use and land cover
patterns. These activities often require cutting or excavating slopes, which can lead to
slope instability (Xiao et al., 2019). Land use also influences water infiltration rates
and, ultimately, the potential for surface accumulation in the soil (Shu et al., 2019).
Pham et al. (2016) noted that landslides are generally less likely to occur in forested
areas compared to barren or sparsely vegetated regions.

Therefore, mapping landslide susceptibility requires an understanding of the
current land use/land cover (LULC) and how it is being utilized, along with precise
monitoring over time (Caldwell, 2019). In this study, Landsat 8 (OLI) was processed
and analyzed to derive the LULC classified layer. The study area was classified into
four categories: vegetation (30.6%), built-up area (3.4%), roads (5%), and bare ground
(61% of the total area) (back to Fig. 5d).

Additionally, the accuracy of the LULC resultant image map was assessed
using 200 randomly generated points that fall under different LULC categories. The
classified LULC raster data were compared with a validated reference dataset using
high-resolution Google Earth images. The relationship between these two datasets was
evaluated using an error matrix (confusion matrix) and the Kappa coefficient. An
overall accuracy value above 85% and a Kappa coefficient between 0.7 and 0.8 are
considered good for validation (Mas et al., 2022). In this study, the overall accuracy
was 96.5% and the Kappa coefficient was 0.94, indicating a significantly high
classification accuracy for LULC (Table 2).

2.4.2. Normalized Difference Vegetation Index (NDVI)

Natural vegetation is one of the commonly used factors in landslide
susceptibility analysis, as it helps stabilize slopes and prevent landslides (Liu et al.,
2018). NDVI is a scientific measurement index reflecting the density and vitality of
vegetation cover, derived from remote sensing (RS) data. It is calculated using the
difference between the red-spectrum reflection and the near-infrared (NIR) in the
electromagnetic spectral radiation. Healthy vegetation has a high NDVI value,
indicating its absorption of red light and reflection of a greater amount of NIR light
(Gao, 1996). Conversely, areas with low NDVI values indicate bare soil or unhealthy
vegetation, which may be more prone to landslides due to the lack of stabilizing roots
(Liu et al., 2018).

In this study, the Normalized Difference Vegetation Index (NDVI) was
calculated using 30-meter resolution satellite images from Landsat 8, utilizing Band 4
(Red) and Band 5 (Near Infrared), captured on April 10, 2023. These images are
currently available for public download through NASA's Earth Explorer website. The
selection of satellite images with minimal or no cloud cover (Cloud Cover = 0.07) or
complete cloud removal was considered, as it is a crucial requirement for calculating
the NDVI. This index highlights areas with potential landslide hazards (Alvarez-
Mendoza et al., 2019). NDVI can also be combined and infused as a musk band layer
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Table 2. Accuracy assessment of land use/ land cover (LULC) map using kappa coefficient (k).

Built up area Roads Vegetation Bare ground Total User's Producer's
LULC Classes
(User) Accuracy% Accuracy %
1 2 3 4
Built up area 1 9 1 0 0 10 90.00 90.00
Roads 2 1 11 0 0 12 91.67 91.67
Vegetation 3 0 0 60 2 62 96.77 95.24
Bare ground 4 0 0 3 113 116 97.41 98.26
Total (Producer) 10 12 63 115 200
Overall accuracy 96.50%
kappa
Coefficient(Kk) 0.94

with other factors, such as topography and land use, to produce detailed landslide
hazard maps (Liu et al., 2018). In this study, the NDVI map was derived using the
Raster Calculator in ArcGIS 10.5 with the following equation (Eg. 5):

vy — VIR —RED Ea.5)
(NIR + RED)

Where NIR is the reflectance of Near Infrared spectrum and Red is the reflectance of
red spectrum. In this study, the NDVI values range from -0.0214 to 0.3229 (Fig. 5e),
with negative values indicating areas devoid of vegetation and barren regions (such as
rocky or sandy terrains and even landslide areas), while positive values indicate
healthy green vegetation (Pradhan et al., 2017).

2.4.3. Distance from Roads

The construction of mountain roads is a significant anthropogenic factor
affecting the stability of natural slopes (Xiao et al., 2019). This is due to the required
engineering work, such as cutting or excavating slopes, which weaken and destabilize
them, leading to landslides (Jennifer et al., 2021). Therefore, landslides are often
distributed near constructed or under-construction roads (Pham et al., 2019). Thus, the
distance from roads can be considered as a main factor contributing to landslide
occurrence (Chen et al., 2019; Moragues et al., 2021; Ozioko & Igwe, 2020). In this
study, a raster layer representing the distance from roads was created using the
Euclidean distance tool in ArcGIS 10.5 and classified into seven categories. The
maximum road distance in this study is 7770 meters (back to Fig. 5f).

3. Multicollinearity Assessment

Multicollinearity refers to the presence of a high correlation between two or
more independent variables in a multiple regression model. The fundamental rule in
selecting independent variables (landslide conditioning factors) is that they should
exhibit a weak correlation among themselves but a strong correlation with the
dependent variable (landslide locations). Factors that are highly correlated with each
other have the same effect and respond in the same manner, which can impact the
prediction model (Kalantar et al., 2020) and lead to incorrect systematic analysis
(Dormann et al., 2013). Therefore, testing for the strength of any linear correlation
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between two or more independent variables is essential to assess the robustness of the
landslide model (Nwazelibe et al., 2022). The Variance Inflation Factor (VIF) and
Tolerance Level (TOL) are commonly used to test for multicollinearity issues.

The theoretical critical value for the Variance Inflation Factor (VIF) is typically
5 or 10. Values greater than these indicate a very strong relationship between two or
more independent variables, suggesting multicollinearity issues. Similarly, the
theoretical critical value for the tolerance level (TOL) is either 0.1 or 0.2. TOL values
below 0.2 indicate somewhat weak multicollinearity between the selected independent
variables, while values below 0.1 indicate strong multicollinearity (Sujatha & Sridhar,
2021). Multicollinearity is measured using the following equation (Eq. 6):

1 1

VIF=—— = —
1-R>  TOL

3 k) (Eq. 6)
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Where Ri denotes the correlation coefficient when the independent variable Xi is a
Regression coefficient on the remaining variables

4. Landslide Susceptibility Suggested Models

4.1. Artificial Neural Network (ANN) Model

The Artificial Neural Networks (ANN) is a machine learning algorithm that
mimics the structure of neural networks in the human brain. It has been effectively
used in the field of landslides and is widely employed to map landslide susceptibility
(Selamat et al., 2023). The ANN model predicts future landslides based on the
historical distribution of landslide occurrences, making it a valuable tool for assessing
the likelihood and risks of landslides. Therefore, this model has been widely used in
predictive studies of landslides (Hu et al., 2021). The ANN is essentially the
development of an intelligent mathematical model that mimics human cognition and
biological neural networks. It consists of interconnected units that form a specific
structure. The ANN is characterized by its ability to recognize multiple sets of data
within a wide range of datasets without the need for prior expertise, pre-existing
knowledge, or a predefined framework for data training (Yao et al., 2008).

In this study, the back-propagation training algorithm was used as it is one of
the most commonly employed ANN algorithms by researchers in the field of
landslides (Zhao et al., 2022). The ANN utilized the multi-layer perceptron (MLP)
architecture, which includes three components: the input layer, the hidden layer, and
the output layer. The input layers are created based on the landslide conditioning
factors selected for model development.

The input layer has a dedicated neuron for each landslide conditioning factor,
which connects to the hidden layers. The hidden layers are intermediate components
situated between the input and output layers. They receive data from the input neurons
via interconnections, process this data, make predictions about the output neurons, and
then transfer it to the output layer through these interconnections. The output layer
represents the landslide predictions, which were used in this study to classify areas
prone to landslides and areas that are not. The proposed designed structure of the
model is shown in (Fig. 7)
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Fig. 7. The basic proposed designed structure of Machine Learning
MLP-ANN of landslide susceptibility mapping of the study area.

4.2. Frequency Ratio (FR) Model

The frequency ratio (FR) is one of the most commonly used bivariate statistical
analysis methods for assessing landslide susceptibility (Zhang et al. 2020). The FR
method is characterized by its ease of implementation, compatibility with Geographic
Information System (GIS) technology, and its ability to provide accurate results. The
application of the FR method relies on the assumption of all future events can be
predicted based on past information (Chimidi et al., 2017). The FR value is calculated
by dividing the ratio of the area where landslides have occurred by the total study
area. It also represents the ratio of the likelihood of landslide occurrence to non-
occurrence within different classification categories for each landslide susceptibility
assessment factor, thereby measuring the influence of each factor on landslides
(Regmi et al. 2014). Generally, a ratio greater than one indicates a strong relationship
between the conditioning factor and landslides, suggesting a high likelihood of
landslide occurrence. Conversely, values less than one indicate a low relationship with
the probability of landslides, while a value of one signifies a neutral relationship for
landslide occurrence in the overall area. The FR value can be calculated using the
following equation (Eq. 7):

(LS;/LS) (Eq.7)
(Ai/A)

FR, =

Where FRi = frequency ratio of ith class, LSi = total landslide area (number of
landslide pixels) in the ith class, LS = total landslide area (total number of landslide
pixels) in the study area, Ai = area falling under ith class (total number of pixels of ith
class) and A = total area (total number of pixels of the entire map).

These FR values of different classes of the conditioning factors (back to Table
1) are then used to obtain the prediction rate (PR) of each factor which depicts the
weightage of the individual class, using Eq. (8-10) as follows:

R = (FR,- / 3 FR) (Eq.8)
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R;' = MAX(RFU) — Mu’N(RF;J) (Eq.9)
PR; = R;/M!N(R) (Eq. 10)

Where RF is the relative frequency, MAX (RFi, j) is the maximum value of RF of jth
factor, MIN(RFi, j) is the minimum value of RF of jth factor, PRj is the prediction rate
of jth factor. The FR values obtained by using Eqg. (8) will act like the weight of each
class (wij, FR), and PRj is converted to a percentage, which will be the weight of the
jth factor, i.e. Wj, FR. To generate the landslide susceptibility index (LSI) using the
FR method, the weightage to each class of every landslide conditioning factor is given
as per the corresponding FR values obtained by Eq. (8) and then integrated with the
corresponding weight of each element. Named after Claude Shannon, the Shannon
Entropy (SE) Model is one of the most efficient bivariate statistical methods that used
to measure the influence of conditioning factors on slope instability and landslide
occurrence. It examines the relationship between the likelihood of landslides and their
causative factors, as well as the categories of those factors. This technique has the
advantage of allowing for the weighting of the factors and their categories (Constantin
et al. 2011; Jaafari et al. 2014). The larger the SE index, the more significant the
contributing factor to landslide occurrence (Sujatha, 2012). The SE value is calculated
using the following equations (Eg. 11-13):

' Zi:l FR
where m is the number of landslides that have occurred, and FR is the frequency ratio.
As a result, the normalized decision matrix Pij can be defined as follows (Eq. 12) for
each landslide criterion:

m

E =-K Z P,InP, (Eq. 12)
i=0

where E;j is the entropy value, Pjj is the value of the ith landslide in the jth criterion,
and k is a positive instant given as (Inm)™. The weights (Wj) were assigned to the
roles of the variables influencing the synthesis grade, with higher scores indicating
greater significance of the variable's contribution within the rating scheme. Where V;
is defined 1 — E;j. The weights were calculated by using (Eq. 13).

Vi (Eq. 13)
Wf = Zm V ) .
i=0"J

Validating predictive models is an essential part of landslide susceptibility
research (Hong et al. 2018; Pourghasemi & Rossi. 2017). A landslide susceptibility
map becomes ineffective without model validation (Mersha and Meten, 2020; Pham et
al. 2017). There are several statistical measures to evaluate the performance of
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predictive landslide models, including: Receiver Operating Characteristic Curve
(ROC) and Area Under the Curve (AUC) ,landslide Relative Density Index (R-index),

a Model -Success and Predictive Rate Curve. the sensitivity, specificity, accuracy,
positive predictive value (PPV), negative predictive value (NPV), and kappa statistics

(Azemeraw, 2021; Selamat, 2022).

This research study employs the ROC_AUC model to evaluate the performance
of landslide susceptibility maps (LSM) derived from the FR, ANN, and SE models.
AUC is one of the most widely used metrics for assessing the performance of
predictive models (Zhao et al. 2022; Sengupta & Nath, 2022; Tingyu & Nath, 2022).
Additionally, AUC represents a graph between the success rate curve, indicating the
model's ability to classify areas into categories at risk of landslides using the training
dataset, and the prediction rate curve, reflecting the model's ability to predict future
landslide occurrences using validation data (Kalantar et al. 2018). The ROC graph was
plotted using the "Calculate ROC Curves and AUC Values" tool from the ArcSDM5
toolbox (Mas et al. 2013). AUC values range from 0.5 to 1, and they are classified as
follows: excellent (0.9-1.0); very good (0.8-0.9); good (0.7-0.8); average (0.6-0.7),
and fair (0.5-0.6) (Yesilnacar& Topal. 2005). Eventually, AUC_ROC resultant values
that are close to 1 indicate more accurate and reliable predictions in model
performance, while the model is considered weak when the resultant values are less
than or equal to 0.5 (Mfondoum et al., 2023). The AUC value can be calculated using
the following equation (Eq 14):

AUC = Q. TP+> TN) (Eq. 14)
(P+N)

where TP (true) and TN (true negative) denote the correctly classified raster cells, P
expresses the total number of landslide raster cells, and N represents the total number
of non-landslide raster cells.

V. Results and Discussion

1. Multicollinearity Analysis

The Variance Inflation Factors (VIF) and Tolerance Level (TOL) indicators
were used to detect and measure multicollinearity among the eighteen landslide
conditioning factors. The VIF and TOL values were calculated using SPSS (Table 3).
The results of the analysis showed that all VIF values were below the critical
threshold, with the highest VIF value being 5.76 and the lowest being 1.29. Regarding
TOL values, all were above the critical threshold, with the highest and lowest TOL
being 0.77 and 0.17 for the lithology and landform patterns factors, respectively. This
indicates that the multicollinearity assessment for the eighteen specified factors met
the critical thresholds. Therefore, none of the identified conditioning factors for
building the landslide prediction model exhibited multicollinearity.
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Table 3. Variance Inflation Factors (VIF) and Tolerance (TOL) analysis.

Multicollinearity analysis

Conditioning Factors

Tolerance VIF

Altitude 0.391 2.556
Slope angle 0.210 4.772
Slope-Aspect 0.762 1.312
slope length 0.698 1.433
TPI 0.193 5.176

TRI 0.673 1.486
landform patterns 0.174 5.760
General Curvature 0.702 1.424
Plan Curvature 0.654 1.529
Profile Curvature 0.564 1.772
Lithology 0.770 1.299
Distance from Fault 0.637 1.569
TWI 0.207 4.836
Distance from Stream 0.317 3.153
Rainfall 0.589 1.697
LULC 0.629 1.589

NDVI 0.646 1.547
distance from Road 0.581 1.721

2. Resultant Landslide Susceptibility Predictive Models

2.1. Integrating GIS with ML-Artificial Neural Networks (ML-ANN)

Understanding the factors causing landslides is crucial for efficiently managing
their risks. Therefore, landslide studies are essential for improving landslide
prevention and risk assessment. The landslide predictive model using the Machine
Learning Artificial Neural Networks (ML-ANN) serves as a valuable intelligent
modeling approach for identifying at-risk areas and predicting the likelihood of
landslides. This model has been used by many researchers as a reliable predictive
modeling algorithm (Jacinth Jennifer & Saravanan, 2022; Orhan et al., 2022; Mehrabi
& Moayedi, 2021).

In this study, an approach of integrating Geographic Information Systems
(GIS) with ML-ANN was employed to make predictions for the landslide model. This
approach relied on pre-prepared spatial information as landslide causative factors,
along with inventory data of past and present landslides, which are considered the best
indicators for future predictions (Ma et al., 2021). Upon reviewing the literature on
landslide studies, 18 factors influencing the occurrence of landslides were selected.
These factors are: (Altitude, Slope angle, Slope-Aspect, slope length, TPI, TRI,
landform patterns, “General, Plan and Profile Curvature”, Lithology, Distance from
Fault, TWI, Distance from Stream, Rainfall, LULC, NDVI, distance from Road)
(Back to Fig. 3, 4 and 5).

The final results indicated that the conditioning factors such as slope angle,
slope aspect, landform patterns, distance from streams, distance from roads, TPI,
lithology, slope length, and TWI were the most significant factors influencing the
occurrence of landslides. Conversely, general curvature and rainfall were identified as
the least important factors for landslide occurrence in the study area (Fig. 8a).
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Fig. 8. Importance of influencing factors differentiation according to the examined three
landslide utilized predictive modeling approaches (a) ANN, (b) FR and (c) SE.
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According to ranking the resultant influence importance of the selected
landslide conditioning factors that have been extracted and analyzed in an integrated
GIS/ML-ANN method, the first ranking factor is the slope angle which is the most
significant factor influencing landslides in Wadi Dil’ah basin.

An increase in slope angle leads to the instability of rock and soil masses (Jebur
et al., 2014), making it a widely used factor in landslide studies. The results indicated
that slope aspect is the second important ranking factor that effects landslide
occurrence, as it affects various processes that have direct and indirect impacts on
landslides, such as wind directions, rainfall, vegetation cover, sunlight exposure,
evaporation, transpiration, and soil moisture concentration (Devkota et al., 2013).

The results also showed that landform patterns are the third most important
ranking factor affecting landslides in the study area. The fourth most important factor
Is the distance from streams, as most landslide incidents in the study area occur in
mountainous regions and near drainage networks.

Additionally, the distance from roads is a significant factor contributing to
landslides. Most landslide incidents in the study area occur in mountainous regions
and near roads. Road construction in mountainous areas negatively impacts slope
stability because it always imposes an engineering load and damages the slope
structure (Tien Bui et al., 2016). Therefore, any road construction activities involving
the cutting of slopes steeper than 10 degrees cause soil and rock disruptions (Nohani
et al., 2019), leading to landslides.

2.2. Frequency Ratio (FR) Model

As it is displayed in Table 1, the results demonstrated the spatial relationship
between landslide locations and their causative factors using the Frequency Ratio (FR)
model. The results indicated that lithology is the most influential factor in landslide
occurrences (Fig. 8b), with a relative impact value of FR equal to 4.40. In terms of
geological formations, the Bahah Group has an FR value of 1.334, while the other
formations have zero values. This is attributed to the predominance of these
formations in the study area, as they constitute 74.9% of the total area of Wadi Dil'ah
basin. Additionally, many steep roads have been constructed through these units
without any engineering specifications, and numerous landslides have been recorded
along their lengths. Furthermore, these units are located in areas characterized by high
and steep cliffs.

The slope angle factor ranked second in terms of relative impact, with a value
of 4.17. The slope category of (45 — 67) degrees recorded an FR value of 34.73,
followed by the slope category of (30 — 45) degrees with an FR value of 1.76, while
the remaining categories recorded values below one. The TWI index ranked third with
an FR value of 4.04, indicating that the category of TWI greater than 10 has the
highest FR value of 4.41, while the other categories had values less than one. The
profile curvature factor ranked fourth with a value of 3.24, where the concave
category recorded the highest FR value of 1.59, while the Convex and Flat categories
had the lowest FR values of 0.57 and zero, respectively. The distance from faults
ranked fifth with a relative weight of 3.10, showing that the distance category of (0-
750 m) recorded the highest FR value of 2.16. The probability of landslide
occurrences decreases at distances greater than 750 meters, with the categories of 750-
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1500 m recording a FR value of 0.544, followed by 1500-2250 m with 0.144, 2250-
3000 m with 0.128, and 3000-3750 m with 0.088. While the other categories recorded
zero values, the elevation category of 2000-2500 m had the highest FR value of 4.214,
followed by the categories of 1000-1500 m (0.954), 1500-2000 m (0.938), and 500-
1000 m (0.246). The elevation categories greater than 2500 m and less than 500 m
recorded the lowest FR values (0.00). The results also indicate that the FR values for
elevation categories do not show significant correlations with decreasing elevation in
the study area. Pachauri and Pant (1992) noted that higher elevations are associated
with a greater susceptibility to landslides. In the current study, the high FR values may
be related to areas of steep slopes that are interspersed with many streams and gullies.
Regarding the plan curvature factor, it had an impact ratio of 2.69.

The convex category recorded the highest FR value of 1.325, while the concave
and flat categories recorded the lowest FR values of 0.842 and zero, respectively.
Regarding the distance from roads, it can be observed that the general trend of FR
values increases with decreasing distance. The results indicate that roads have a
significant impact on landslides, primarily due to the rock-cutting processes associated
with the construction of escarpment roads on slopes in the study area, which have
weakened the stability of the rocks and consequently led to landslides along the roads.

As for the TRI index, the relative impact value for this factor was 2.57, with the
category 0.12-0.16 showing the highest FR value of 18.065, followed by the
categories 0.08-0.12 and 0.04-0.08, with values of 8.972 and 3.536, respectively,
while the other categories recorded values less than one. For the LULC factor, bare
ground had the highest FR value of 1.483, while the remaining LULC patterns
recorded values less than one, indicating that barren and desolate areas are the most
susceptible to landslides due to their exposure to erosion and soil moisture (Solaimani
et al. 2013).

For the General Curvature factor, the convex category recorded the highest FR
value of 1.733, followed by the concave category at 0.571, while the flat category had
the lowest values. Regarding the Landform Patterns factor, the results showed that the
Summit category had the highest FR value of 5.059, followed by the Ridge and Slope
categories with values of 3.125 and 1.775, respectively. The Spur category had an FR
value of 0.206, while the remaining landform patterns recorded zero values.

Concerning the rainfall factor, the results indicated that the rainfall category of
300-400 mm recorded the highest FR value of 1.215, followed by the 400-500 mm
category at 0.979, and the 250-300 mm category at 0.468. The 200-250 mm category
had a zero value. The results show that heavy rainfall, which frequently occurs along
the escarpment area at higher elevations, increases the likelihood of landslides.

Regarding the TPI index, the results showed that the category (>70) had the
highest FR value of 2.848, followed by the category (30-70) at 1.731, while the
remaining categories recorded values below one, with the category (<-50) having the
lowest value of 0.111. Concerning the NDVI index, the values between (0.0717:
0.0906) and (-0.0214: 0.0717) had the highest FR values of 1.432 and 1.226,
respectively. This indicates that the categories with high FR values represent barren
and sparsely vegetated areas, which are more prone to landslides. Abdi et al. (2010)
pointed out that vegetation can protect slopes by reducing erosion effects,
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strengthening the soil, enhancing slope stability, and limiting the occurrence of
landslides.

Regarding the slope aspect, most landslides occurred in the eastern, southeast,
and northeast directions. These directions recorded the highest FR values of 2.912,
1.427, and 1.381, respectively, indicating a higher likelihood of landslide occurrences.
However, other slope aspect categories recorded values below one, suggesting a lower
probability of landslides. The high frequency of landslides in specific slope aspect
directions may be associated with local conditions, such as prevailing wind and storm
directions, fault orientation, and rock structure.

Regarding the Distance from the stream factor, the distances between 200-300
meters, 100-200 meters, and 300-400 meters recorded the highest FR rates, with
values of 1.338, 1.271, and 1.186, respectively. It is noteworthy that the general trend
of FR values increases as the distance from water bodies decreases. Therefore, it can
be said that proximity to streams is one of the most important factors contributing to
slope instability and the frequency of landslides.

As for the slope length factor, it ranked last in terms of relative impact (1.0) on
landslide occurrences. The relationship between slope length and landslide probability
is evident; the category of slopes greater than 45 meters recorded the highest FR value
(4.194), followed by the categories of 15-30 meters, 30-45 meters, and 5-15 meters,
with FR values of 3.975, 3.330, and 2.968, respectively. Meanwhile, the category of
slopes less than 5 meters recorded the lowest FR value (0.737). In general, the results
indicate that the trend of FR values increases with increasing slope length.

2.3 Shannon Entropy (SE) Model

The Shannon Entropy (SE) method is one of the preferred modeling approaches
for mapping landslides due to its flexibility and ease of computation. The higher the
SE value corresponding to a particular factor, the greater the significance of that factor
and its strong influence on the occurrence of landslides. Conversely, a lower SE value
indicates a diminished discriminatory power of that factor in the decision-making
process (Lotfi & Fallahnejad, 2010).

The weights in the SE Model were calculated based on the values of the
Frequency Ratio (FR). The results of the SE analysis indicated that the lithology factor
Is the most supportive of landslide occurrence, with a value of (0.122), followed by
LULC (0.087), distance from faults (0.084), TWI (0.080), landform pattern (0.078),
slope angle (0.070), and distance from roads (0.067). On the other hand, there are
factors that have less influence on landslide occurrence compared to the
aforementioned factors, which are: plan curvature (0.048), slope length (0.046),
rainfall (0.044), TRI (0.040), altitude (0.037), NDVI (0.037), curvature (0.035), slope
aspect (0.027), distance from streams (0.026), and finally, the TPI index, which has a
weight of (0.016), making it the least significant factor in terms of its impact on
landslide occurrence in the study area (Fig. 8c).

The subcategories of the factors most influential in landslide occurrence have
been identified (back to Table 1), where the Pij values for the lithology factor indicate
that the Bahah Group formation is the most influential on landslide occurrence
(Pij=1). The Pij values for the LULC factor show that bare ground is the area most
prone to landslides, with the highest value of (0.598) Pij, followed by roads
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(Pij=0.238), built-up areas (Pij=0.087), and then vegetation (Pij=0.077). The results
for the distance from faults indicate that the category (0-750 m) recorded the highest
Pij values (0.705), followed by the category from 750-1500 m (Pij=0.178), indicating
a correlational relationship between proximity to faults and landslide occurrence.

The TWI index recorded the highest Pij values (0.919) for the category (> 10),
indicating that this range is the most susceptible to landslides, followed by the
category from 8-10 (Pij=0.081). The results show that the summit has the highest
probability of landslide occurrence, with a value of (Pij=0.498), followed by the ridge
(Pij=0.307), slope (Pij=0.175), and spur (Pij=0.020).

The Pij results revealed that the slope category (45-67) is the most susceptible
to landslides, with a value of (Pij=0.949), followed by the slope category (30-45) with
(P1j=0.048) and (18-30) with (Pij=0.003). The Pij values increase as the distance to
roads decreases, indicating that road construction and vehicle movement contribute to
the destabilization of rocks, leading to landslides. The highest Pij value (0.586) was
recorded for the distance category from 0 to 1000 meters, followed by the category
from 1000-2000 meters (Pij=0.282), the category from 2000-3000 meters (Pij=0.083),
and the category from 3000-4000 meters (Pij=0.049).

Regarding profile curvature, it was found that concave (Pij=0.736) has the
highest impact on the likelihood of landslides, followed by convex (Pij=0.264). The
Pij values for plan curvature indicate that convex (Pij=0.612) is the most influential
factor in landslide occurrence, followed by concave (Pij=0.338). The probability of
landslides increases with the slope length; the category (>45 meters) recorded the
highest Pij value (0.276), followed by the category between 15-30 meters (Pij=0.261),
30-45 meters (Pij=0.219), and 5-15 meters (Pij=0.195), while the category (<5 meters)
recorded the lowest Pij value (Pij=0.048).

The results show a clear relationship between heavy rainfall and the increased
likelihood of landslides, with the category of 300-400 mm recording the highest Pij
value (0.456) for average annual rainfall, followed by the category of 400-500 mm
(Pij=0.368) and 250-300 mm (Pij=0.176). The TRI results indicate that the category of
0.12-0.16 had the highest Pij values (0.585), followed by the categories of 0.08-0.12
(Pij=0.291) and 0.04-0.08 (Pij=0.115), suggesting that landslides are more likely to
occur in these areas. The highest Pij value (0.663) was found in the altitude category
of 2000-2500 m, followed by 1000-1500 m (Pij=0.150) and 1500-2000 m (Pij=0.148).
The arid and sparsely vegetated areas in the NDVI layer represent the most
susceptible regions for landslides, with the category between (0.0717: 0.0906)
recording the highest Pij values (0.373), followed by the category (-0.0214: 0.0717)
(Pij=0.320) and the category (0.0906 - 0.1109) (Pij=0.244).

Meanwhile, Pij values decrease in the remaining categories, indicating the role
of dense vegetation in strengthening the soil, protecting slopes, stabilizing them, and
reducing the likelihood of landslides. For the General Curvature factor, the highest Pij
value (Pij=0.612) was for convex, followed by concave (Pij=0.213), while the lowest
value (Pij=0.142) was for flat. The density of landslides increases on slopes facing
east, southeast, and northeast, with Pij values for these directions being (0.347, 0.174,
0.164), respectively. Regarding Distance from Stream, the category between 200 and
300 meters recorded the highest Pij value (0.242), followed by the categories of 100-
200 meters (0.230), 300-400 meters (0.214), 0-100 meters (0.119), 400-500 meters

vy AY e Y€ alad ¥Rl - AASSA dudde Alna - Gl a5 KI5 A jaal) Cigaill S e dlae


https://mkgc.journals.ekb.eg/

Journal homepage: https://mkgc.journals.ekb.eg/ Egypfion Knowledge Bank
ISSN: 2357-0091 (Print) 2735-5284 (Online) AR o) a6ye0) diy

(0.102), and 500-600 meters (0.093). TPI values indicate that the category (>70) has
the highest Pij value (0.468), followed by the category of 30-70 (0.284), the category
of -10 to 30 (0.164), the category of -10 to -50 (0.065), and the category (<-50)
(0.018).

3. Creating Landslide Susceptibility Maps (LSMs)

The primary objective of this study is to create comprehensive landslide
susceptibility maps and evaluate the effectiveness of the Machine Learning Artificial
Neural Network (ML-ANN) model and Bivariate techniques (FR and SE) in
predicting landslide susceptibility in Wadi Dil'ah basin study area. To achieve this
goal, an approach of integrating Geographic Information Systems (GIS) and Remote
Sensing (RS) with statistical models and artificial machine learning algorithms were
adopted to produce distinct maps indicating the level of susceptibility to landslides.

The generated maps have provided valuable insights into the potential
likelihood of future landslide occurrences. By comparing the maps obtained from the
three models with the existing landslide data (actual points) and non-landslide data,
we aimed to assess the performance of each model. To achieve this, a testing dataset
(comprising 30% of the total landslide inventory and 30% of the total non-landslide
data) was used.

To reveal the similarities and differences between the results of the models
used in the study, the derived maps from the three models were converted to
standardized values ranging from 0 to 1 using Fuzzy Membership. Following this, the
derived maps were classified into five categories (very high, high, moderate, low, and
very low) using the Natural Breaks (Jenks) classification tool in ArcGIS. The low to
very low sensitivity areas on the maps indicate stable areas not prone to landslides
(non-landslide areas), while the high to very high sensitivity areas indicate unstable
regions.

The stable areas not prone to landslides are represented in the models as
follows: 65.45% in the ANN model, 35.78% in the FR model, and 31.41% in the SE
model. The moderate areas are represented as 11.93%, 30.11%, and 28.69%,
respectively. Meanwhile, the unstable areas output by the ANN model constitutes the
lowest percentage (22.62%), followed by the FR model (31.11%), with the SE model
producing the highest percentage (39.90%) (Table 5, Fig. 9).

The percentage distributions revealed that the different LSM models handle the
same conditioning factors differently to produce various landslide-prone areas. The
Machine Learning algorithm (ANN Model) differs from the Bivariate Statistical
models (FR, SE) in its outputs; it generates a higher number of stable areas and fewer
unstable areas. In contrast, the statistical models allocate higher percentages to
unstable areas. Highlighting the low, medium, and high areas, the ANN model reveals
more consistent patterns in its results when compared to previous landslide incidents,
while the FR and SE models appear to overestimate the occurrence of landslides.

4. Validation of Landslide Susceptibility Maps
Model validation is a crucial step in developing susceptibility maps and
determining their predictive capabilities for natural hazard management (Alam et al.
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2024). For this purpose, a dataset was used (70% training data, 30% testing data),
validated to create an Area Under the Curve (AUC curve). The testing dataset is used

Table 5. Comparing percentages of pixels in each class of the selected different LSM models.

ANN FR SE
Classof LS % of Pixel in classes % of Pixel in classes % of Pixel in classes
Very low 64.30 11.04 10.22
Low 1.15 24.74 21.19
Moderate 11.93 30.11 28.69
High 3.97 22.55 27.71
Very high 18.65 11.56 12.19
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Fig. 9. Resultant Landslide susceptibility maps in Wadi Dil’ah Basin of the selected proposed
models (a) Artificial Neural Network (ANN), (b) Frequency Ratio (FR), (c) Shannon Entropy
(SE), (d) Landslide susceptibility class distribution bar chart of the three examined models.
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for model validation purposes. The Receiver Operating Characteristic curves (ROC)
demonstrated the relationship between sensitivity and specificity, and the results of the
ROC-AUC model -statistical measures that evaluate the performance of all examined
predictive landslide models- showed that the performance of the LSMs models is
close to each other, with some minor differences. When comparing the validation of
the training and testing inventory data, the performance accuracy was similar, with the
AUC values for the testing inventory slightly outperforming the training inventory for
all models. The ANN model achieved success in terms of training and testing
accuracy (AUC=0.966, 0.983), followed by the FR model (AUC=0.955, 0.993), and
the SE model (AUC=0.953, 0.971) (Fig. 10 and 11).

The training and testing performance for all examined models was found to be
close, with the difference between the lowest and highest values (ANN, SE) not
exceeding 1.3% and 2.2%, respectively. The smallest difference in training
performance was observed between the FR and SE models (0.2%), indicating a high
degree of similarity between these two models compared to the ANN model. On the
other hand, the testing performance showed the smallest difference between the ANN
and FR models (1%), suggesting a similarity between these two models. Although the
SE model recorded the lowest performance values for both training and testing, it
cannot be considered significantly different from the ANN and FR models, as the
slight difference is not of substantial importance.

Overall, the performance of the ML-ANN model was superior to the bivariate
statistical models (frequency ratio (FR) and Shannon Entropy (SE) models). It is
noteworthy that all the models used had an AUC value higher than 0.9, indicating that
they predict the probability of landslides with excellent reliability.
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Fig. 10. ROC curve for all the three examined models using the Training Datasets.
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Fig. 11. ROC curve for all the three examined models using the Testing Datasets.

V1. Conclusions

This study employs the Machine Learning Artificial Neural Network (ML-
ANN) model and Bivariate Statistical Models to create a landslide susceptibility map
for Wadi Dil'ah basin area in Asir region of Saudi Arabia. A total of 137 landslide
locations were identified and distributed in a 70/30 ratio to form training and testing
datasets. An equal number of locations that did not experience landslides (non-
landslide areas with slope angles less than 2°) were also identified. Eighteen
influential factors contributing to the occurrence of landslides were selected, including
Altitude, Slope angle, Slope-Aspect, slope length, TPI, TRI, landform patterns,

“General, Plan and Profile Curvature”, Lithology, Distance from Fault, TWI, Distance

from Stream, Rainfall, LULC, NDVI, distance from Road.

Multicollinearity was assessed before building the predictive models. The
results of the Variance Inflation Factor (VIF) and Tolerance Level (TOL) indicators
demonstrated that the assessment of multicollinearity for the eighteen selected factors
met the critical thresholds, indicating no multicollinearity issues among the factors.

The back-propagation training algorithm and the Multi-Layer Perceptron
(MLP) architecture were used for the ANN. The results of the ANN indicated that the
conditioning factors of slope angle, slope aspect, landform patterns, distance from
streams, distance from roads, TPI, geological factors, slope length, and TWI are the
most significant factors influencing the occurrence of landslides.

The results from the Frequency Ratio (FR) analysis indicated that lithology,
slope angle, TWI, profile curvature, distance from faults, altitude, plan curvature, and
distance from roads are significant factors. Meanwhile, the results from the Shannon
Entropy (SE) analysis revealed that lithology, LULC, distance from faults, TWI,
landform pattern, slope angle, distance from roads, and profile curvature are the most
influential factors supporting the occurrence of landslides.

The landslide susceptibility map was categorized into five classes, where the
low to very low sensitivity areas indicate stable regions that are not prone to landslides
(non-landslide), while the high to very high sensitivity areas represent unstable

VeV AY e Y€ alad ¥Rl - AASSA dudde Alna - Gl a5 KI5 A jaal) Cigaill S e dlae


https://mkgc.journals.ekb.eg/

Journal homepage: https://mkgc.journals.ekb.eg/ Egypfion Knowledge Bank
ISSN: 2357-0091 (Print) 2735-5284 (Online) AR o) a6ye0) diy

regions. The classification was performed using the Natural Breaks (Jenks) tool. The
results showed that stable and non-landslide areas accounted for (ANN=83.65),
(FR=43.84), and (SE=34.45). Moderate susceptibility areas were represented by
(ANN=2.93), (FR=27.85), and (SE=28.51), while unstable areas were indicated by
(ANN=13.42), (FR=428.57), and (SE=37.03).

The results of the ROC-AUC model showed that the ANN model outperformed
both the FR and SE models, recording training and testing accuracies of (AUC=0.966,
0.983). This was followed by the FR model with (AUC=0.955, 0.993), and then the
SE model with (AUC=0.953, 0.971), respectively.

This research utilized a broader range of conditioning factors, resulting in a
more comprehensive approach to validate landslide susceptibility modeling (LSM).
As a result, the study provides a framework that assists decision-makers, policy-
makers and planners in effectively managing landslide risks in the region. This can be
achieved by enhancing drainage infrastructure to manage excess rainfall and thus
reduce soil saturation, modifying slope angles to mitigate landslide risks, and
implementing structural reinforcements such as slope stabilization to enhance their
stability.

In the future, landslide projects should include raising awareness about early
warning signs and emergency evacuation procedures. Landslide susceptibility maps
will support this effort as well. There is a necessity for research and development in
new technologies especially artificial intelligence and strategies, along with
collaboration with geological experts, engineers, and local authorities when planning
and implementing landslide mitigation measures. This study has enhanced landslide
susceptibility maps and identified high-risk areas in Wadi Dil'ah basin, necessitating
urgent rehabilitation and management. This valuable information can significantly
assist decision-makers in making informed decisions regarding infrastructure
development and urban centers.
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