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ABSTRACT : 
Landslide is a natural hazard that causes numerous casualties and property losses 

worldwide. This study aims to produce landslide susceptibility maps by integrating GIS, 

Remote Sensing, Machine Learning Artificial Neural Networks (ML-ANN) and Bivariate 

Statistical {Frequency Ratio (FR), Shannon Entropy (SE)} approaches in Wadi Dil’ah basin 

in the southwestern part of Saudi Arabia. A total number of 137 landslide sites were 

identified using high-resolution satellite images, historical records, and field surveys. An 

equal number of non-landslide sites (areas with a slope angle less than 2°) were selected and 

divided into two groups; 70% were used for model training and 30% for model validation. 

Eighteen landslide-related factor layers were selected and prepared to be examined, 

including: Altitude, Slope-angle, Slope-aspect, Slope-length, Topographic Position Index 

(TPI), Terrain Ruggedness Index (TRI), Landform patterns, General, Plan, and Profile 

Curvature, Lithology, Distance from Fault, Topographic Wetness Index (TWI), Distance 

from Stream, Rainfall, Land Use/Land Cover (LULC), Normalized Difference Vegetation 

Index (NDVI), and Distance from Road. Moreover, the Variance Inflation Factors (VIF) and 

Tolerance Level (TOL) indices were generated to detect and measure multicollinearity 

assessment to avoid strong correlations among the factors. The relationships between the 

landslide-related factors and the landslide inventory map were calculated by using ANN, FR, 

and SE models. The Receiver Operating Characteristic (ROC) Curve and the Area Under the 

Curve (AUC) were applied to assess the model performance. The results of the VIF and TOL 

indices indicated no multicollinearity among the selected factors. The AUC values for the 

training rates were 0.966, 0.955, and 0.953, while the testing rates were 0.983, 0.993, and 

0.971 for the examined ANN, FR, and SE models, respectively. The resultant landslide 

susceptibility maps (LSMs) were divided into five categories: very low, low, moderate, high, 

and very high. The classification was accomplished by using the Natural Breaks (Jenks) tool. 

The percentage for each landslide susceptibility category was calculated. The research final 

results revealed that the performance of the ANN model was better than the FR and SE 

models. Therefore, the ANN model is recommended as a suitable approach for applying 

landslide susceptibility maps in the mountainous region. It is hoped that the findings of this 

study will assist decision-makers and researchers in mitigating landslides and understanding 

their dynamics. 

Keywords: Landslide susceptibility mapping (LSM) · Artificial neural networks (ANN) · 

Frequency ratio (FR) Shannon entropy (SE) · Landslides. GIS. Saudi Arabia. 
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I. Introduction 

Landslides are among the most destructive natural environmental hazards and 

pose a significant risk to human life in mountainous regions (Ali et al. 2021). They are 

recognized as a threat to human life, human activities, and various economic, social, 

and political aspects, as well as natural resources (Bista, 2022; Wang et al. 2015). 

Landslides are responsible for substantial losses in lives and property and hinder 

social development (Cui et al. 2019; Khan et al. 2021). Additionally, they cause 

damage to infrastructure, agricultural lands, and urban areas in various mountainous 

regions worldwide (Li et al. 2020; Mondini et al. 2021). 

The United Nations Development Program (UNDP) states that landslides rank 

second among the most common geological hazards in the world, causing significant 

financial losses annually (Pham et al. 2020). Approximately 66 million people live in 

areas highly susceptible to landslides, and 17% of casualties in these regions are 

attributed to landslides, which are recurrent disasters in mountainous areas (Achu et 

al., 2022a, 2022b). The economic losses have amounted to about USD of 10.8 billion 

from 1990 to 2020. These losses are expected to increase in the future due to the 

growing urban expansion, economic development, and unusually high levels of 

rainfall caused by climate change (Saha et al., 2021; Jakob, 2022; Li et al., 2022; 

Naceur et al., 2022). However, these damages and losses can be mitigated through 

effective planning and management (Rajakumar et al., 2007). 

Landslides are defined as the downward movement of rock masses and debris 

down slopes (Cruden et al., 1996), and occur due to natural phenomena or human 

activities (Cruden et al., 1991; Shano et al., 2021). These causes include rainfall, 

earthquakes, groundwater level changes, tectonic movements, the formation and 

erosion of water channels, accelerated severe slope erosion, road construction, 

deforestation, and mineral extraction (Gomez et al., 2023). These factors cause a rapid 

increase in the stress borne by slope materials and a decrease in shear strength, 

surpassing what is known as the triggering threshold, an indicator of slope instability 

and the occurrence of landslides (Cardinali et al., 2002). 

Additionally, human activities have a direct impact on the landscape, causing 

changes in slopes due to urban expansion into areas with unstable slopes affected by 

past landslides. Excavation and filling activities, as well as road construction, are 

significant factors contributing to landslides. These activities alter the surface slope 

during and after urban development in these areas (Farhan, 2002). 

The southwestern region is considered one of the most important gateways to 

the Kingdom of Saudi Arabia due to its strategic location, attracting significant 

attention from the Saudi government. This region is characterized by its rugged 

mountainous terrain, notably the towering Arabian Shield Mountains, which constitute 

more than 70% of its area and receive a substantial amount of rainfall annually. 

Consequently, numerous landslides have been recorded, triggered by various 

mechanisms such as rainfall, earthquakes, and human activities (Youssef et al. 2022). 

Therefore, landslides are among the most common phenomena in the 

southwestern part of the Kingdom of Saudi Arabia, particularly along Asir Highlands 

(Sarawat mountain range). This region is characterized by its steep scarps, and the 

catchment areas are particularly susceptible to landslides due to intense rainstorms. 
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The pace of development in this region has accelerated significantly, with the 

establishment of numerous urban areas and infrastructure roads, escarpment roads, 

tunnels, and highways throughout the mountainous areas. Given the geological 

characteristics of this region, where numerous tectonic movements occur, many of 

these rock formations become steep and structurally weak, leading to frequent 

landslides and mass movements such as landslides and debris flows (Sidle et al. 

2018). This poses serious threats to urban areas and the infrastructure that supports 

transportation. 

Landslide Susceptibility Assessment (LSA) is an important assessing 

measurement in geological hazard research (Merghadi et al. 2020; Azarafza et al. 

2021). It is considered as a significant value for studying the distribution of landslide 

probabilities and understanding the relationship between landslides and the 

environmental factors that cause them. Previously, there have been few attempts to 

address landslide susceptibility in Saudi Arabia. However, with the increasing rate of 

landslides in recent years, it is essential to raise awareness of the landslide problem 

and work on reducing their impacts and/or preventing them to some extent through the 

use of predictive models for landslide occurrence and assessing the factors that would 

be contributed to them. 

Remote sensing (RS) and geographic information systems (GIS) techniques are 

effective and beneficial in mapping landslide susceptibility. By utilizing these 

technologies, suitable and unsuitable areas for developmental activities can be 

identified. Recently, with advancements in various software programs based on 

Machine Learning Algorithms (ML) and Data Management (DM), numerous studies 

have been conducted to map landslide susceptibility using machine learning 

algorithms, including Artificial Neural Networks (ANN), Convolutional Neural 

Networks (CNN), Random Forest (RF), Logistic Regression (LR), and Support Vector 

Machines (SVM), along with other statistical models such as Frequency Ratio (FR) 

and Shannon Entropy (SE), with the assistance of GIS and remote sensing 

(Vayadande et al. 2024; Ganesh et al. 2022; He et al. 2023; Selamat et al. 2022; 2023; 

Masruroh, 2023; Youssef, 2023). 

However, these models produced varying results with different types of data 

according to the selective study area by different researchers. The significance of this 

study lies in the ability to map landslide susceptibility in the basin of Wadi Dil'ah area 

of Asir in the southwestern (SW) region of Saudi Arabia, along Abha-Jazan Road, 

relying on the selection of effective conditioning factors (Anis et al. 2019; Dam et al. 

2022) and based on remote sensing and geographic information systems that 

integrated with machine learning algorithms (ANN) and statistical models (FR - SE). 

It is known that Abha-Jazan Road (Al-Dil'ah Pass) has suffered damage and 

disruptions due to landslide occurrences, especially following heavy rainstorms, 

particularly during the rainy season when sudden floods lead to rock falls along cracks 

or create debris flows of sedimentary materials accumulated along drainage networks. 

Therefore, the results of this study can assist planners and decision-makers in 

identifying areas prone to landslides to mitigate their risks in the study area. 
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1. Description of the Study Area: 
Wadi Dil'ah basin (the study area) is located in Asir region in the southwestern 

part of Saudi Arabia, south of Abha City. It extends between the latitudes of 18° 12' 

25" N and 17° 54' 11" N, and the longitudes of 42° 25' 44" E and 42° 35' 25" E (Fig. 1 

left). Wadi Dil'ah basin is approximately 33.817 km long and 12.378 km wide, 

covering an area of 283.2 km². The study area falls within the Arabian Shield. Wadi 

Dil'ah basin is one of the sub-basins of Etwid Wadi in Asir region. Wadi Dil'ah flows 

from the Sarawat Mountains towards Tihamah plain in a southwest direction and 

continues in this direction until it meets the lower Etwid Wadi. Moreover, Wadi Dil'ah 

basin is characterized by its rugged topography, especially in its upper basin, with the 

highest elevation peak reaching 2,661 meters above sea level, while the lowest 

elevation being 415 meters above sea level. 

Wadi Dil'ah takes on a triangular shape, with a Form Factor of 0.21 (Horton, 

1945). Several important roads pass through the study area, including Dali'ah 

escarpment, which connects various villages within the region (Fig. 1 right) and links 

to other major cities such as Abha, Jizan, and El-Drab. The slope angles range from 0 

to 66.3 degrees. The climate of the study area is moderate, with summer temperatures 

not exceeding 30 degrees Celsius, while winter temperatures tend to be cooler, 

reaching around five degrees Celsius in the highlands. Wadi Dil'ah is one of the most 

significant sub-valleys of Wadi Etwid, rich in the amounts of water flowing through it 

or stored within it. It receives rainfall in the form of intense storms between March 

and May, with average monthly precipitation of 29.5 mm in March, 46.5 mm in April, 

and 64 mm in May. It is worth noting that the southwestern mountainous region where 

the study area is located has experienced numerous unprecedented rainstorms across 

the Saudi kingdom, with these rains increasing in intensity, duration, and frequency, 

resulting in various forms of widespread destruction (Abu Abdullah et al. 2020). 

2. Data Sources and Types  
Several sources were used to produce different types of data. This data includes 

information from historical records, reports from the Civil Defense Department, the 

Ministry of Transport, and agencies responsible for road maintenance in Asir region, 

along with field studies (data collected over different periods from the local 

population between 2013 and 2019).  

Data sources also included high-resolution satellite images (GeoEye images 

with a spatial resolution of 0.5 meters, obtained from King Abdul-Aziz City for 

Science and Technology (KACST), and Google Earth Professional images with an 

approximate spatial resolution of one meter) and Landsat 8 (OLI) images with a 

spatial resolution of 30 meters (Landsat 8 satellite image Path 167 Row 048 Scene 

Identifier LC08_L2SP_167048_20230410, Acquisition Date: 10-04-2023, obtained 

from the United States Geological Survey USGS earth explorer website (https:// earth 

explorer. usgs. gov/). 

This aided in identifying land use/land cover patterns. The study also utilized 

Band 5 (Near Infrared) and Band 4 (Red Band) to derive the Normalized Difference 

Vegetation Index (NDVI) values for the study area. The data included the ALOS-

PALSAR digital elevation model with a resolution of 12.5 meters 

(https://search.asf.alaska.edu/#/), which was useful in deriving various parameters,  
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Fig. 1 Study area map with Landsat-8 false-color composite image RGB (5,4,2). 

including elevation, slope angle, slope aspect, slope length, Topographic Position 

Index (TPI), Terrain Ruggedness Index (TRI), Terrain Wetness Index (TWI), 

landform types, general, plan, and profile curvature, as well as the drainage network. 

Geological and topographic maps were scanned and then georeferenced within 

ArcMap interface in ArcGIS software. Following this, a database was constructed and 

built within the Arc Catalog environment. This was followed by the digitization 

process, which converted the maps from their paper format to digital format while 

establishing a uniform datum and projection system, specifically 

WGS_1984_UTM_Zone_38N. Geological formations and faults were digitized from 

the geological maps at a scale of 1:250,000 issued by the Ministry of Petroleum and 

Mineral Resources, specifically Wadi Baysh (GM-77) and Abha (GM-75) quadrangle 

geological maps, which were obtained from the Saudi Geological Survey database.  

The road network in the study area was also digitized from the topographic 

map at a scale of 1:250,000 published by the Aerial Survey (A.S) Department of the 

Ministry of Petroleum and Mineral Resources, particularly Sabya Sheet (NE36-9) and 

Abha Sheet (NE36-5). Additionally, road data were downloaded from the website 

(https://www.openstreetmap.org/export) to update the road network derived from the 

topographic maps. Distance layers to roads, faults, and waterways were derived in 
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raster format using the Euclidean Distance Tool in ArcGIS. Furthermore, additional 

data was derived from the annual surface information report issued by the National 

Center for Meteorology on average rainfall from 2012 to 2021 at Abha, Al-Soudah, 

Tamniah, and Al-Drab stations were used to derive a raster format layer for rainfall 

distribution. Finally, some landslide locations were surveyed using a Global 

Positioning System (GPS) in the study area. 

II. Literature Review 
The literature review of this research provides the necessary background of the 

variation of some essential studies of landslides that were carried out by many 

researchers and analysts that utilized different methods and techniques in various 

geographically mountainous areas and regions. Moreover, it sheds light on the various 

statistical and technical combination models that could be used and applied in this 

new field of study. World widely, it appears that about 1.3% of destructive natural 

disasters occurred and existed from landslide, with Asia accounting for about 54% of 

this phenomena (Khaliq, et al., 2022; Shahabi, et al., 2023). However, it is directed 

toward some selective researches that were applied generally in Asia and particularly 

in Saudi Arabia.  

In 2015, a study of delineating landslide susceptibility (LS) was applied by the 

geologist "Ahmed Youssef" in Ar-Rayth mountainous area in Jizan (KSA). He used 

an Analytical Hierarchy Process (AHP) that infused with both Frequency Ratio (FR) 

and Logistic Regression (LR) models. A land inventory map was constructed of all 

landslides locations based on many data sources along with the proposed causative 

factors' weights in the study area. The study ends with producing three susceptibility 

maps indicating the preference usage of LR model for landslides studies (Youssef, A., 

2015). Additionally, another study of the former author in the same year is 

accomplished to map landslide susceptibility in another different mountainous area in 

Jizan (KSA). It was conducted by using GIS-based frequency ratio and index of 

entropy models. The study area was delineated as "Al-Hasher" area that is located NE 

Jizan City. In this paper, the (FR) and Index of Entropy statistical models were 

experienced along with the aid of GIS tools and remote sensing data. Landslide 

Susceptibility Maps (LSMs) were produced by achieving nearly a value of 0.7 in both 

models, respectively (Youssef, A., et al., 2015a). Moreover, Youssef and three other 

researchers assessed landslide susceptibility in Wadi Jawrah basin that is located in 

the Jizan region, SW KSA. He utilized different types of data sources that depends 

more on geological structures and variables for the selected influence factors. In this 

study, he concentrated on evaluating two bivariate statistical approaches, the (FR) and 

Weights-of-Evidence (WoE) to produce and assess the final LSMs. His final results 

revealed that both experimented models produced reasonable accuracy (Youssef, A., 

et al., 2015b). 

In 2019, an assessment study of LS in Mazandran Province (Iran) is 

accomplished by using an integration method of two statistical models. The first is FR 

and the second is Random Forest (RF) that were infused in satellite ASTER and 

SRTM DEMs data. The main advantage of this research methodology is the capability 

of determining the relative importance of effective factors and enlighten the spatial 

relationship between these factors and landslides locations (Arabameri, 2019). 
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Another Landslide Susceptibility Mapping (LSM) study in the northern part of Iran to 

compare four bivariate statistical models: FR, SE, WoE, and Evidential Belief 

Function (EBF).  The research ends with a final result of recommending the usage of 

WoE model in the study area that achieved the highest AUC value indicating the 

highest accuracy (Nohani, 2019). 

 In 2021, a geological/geophysics study of LSA and its impacts on the urban 

expansion of Makkah Al-Mukarramah (KSA). The data were processed and analyzed 

using the Horizontal-Vertical Spectral Ratio (HVSR) method to gain the resonance 

frequency and H/V amplification factor. The study ends with recommending the usage 

of microtremor measurements as an effective technique in locating the sites that suffer 

from landslides (Abdelrahman, et al., 2021). In a study area of Al-Fawar basin (Syria), 

an assessment of LSM zonation was applied. The study used bivariate statistics of FR 

model and Statistical Index (SI) model with utilizing 13 dominant factors (Abdo, 

2022). 

In 2023, a study to produce a LSM for Al-Hada Mountainous terrain of 

Makkah province in Saudi Arabia, a usage of GIS and RS tools only were a dominant 

research methodology without infusing any statistical approach. A GIS-based 

weighted overlay analysis along with a remotely sensed data were applied. Selective 

eight raster format layers work as conditioning factors are processed. The study lacked 

of measuring an accuracy assessment for the produced final map and it is not working 

for regions with small-scale landslides (Alharbi and El-Sorogy, 2023). Another study 

to produce a LS evaluation that based on remotely sensed, geological, and 

seismological data to be infused with moicrotremor measurements of Al-Taif urban 

area in Saudi Arabia. The study offered a recommendation stating that the 

microtremor measurements give a thorough method for assessing landslides. It 

expedites landslide analyses and lowers the initial expenses of numerical 

computations with a significantly high accuracy (Abdelrahman, et al., 2023). 

 Furthermore, a recent study offers a new methodological approach to generate 

LSMs by assessing the efficiency of applying three conventional Machine Learning 

Algorithms (MLAs) including RF, Decision Tree (DT), and Support Vector Machine 

(SVM), utilizing 14 influential factors. The study area is located in Iran's western 

Kurdistan province and resulted of showing that DT, RF, and SVM have respective 

prediction rates of 0.94, 0.82, and 0.75 (Shahabi, et al., 2023). Finally, another recent 

study offers a new methodological approach to handle the LS Mapping in different 

perspective. The study area is located in Chattogram (Bangladesh). Its incorporated 

GIS-based machine learning algorithms of Logistic Regression (LR) with RF and 

Decision & Regression Tree (DRT) models. Sixteen landslide conditioning factors 

were determined and experimented. Three LSMs for the three models were produced 

and accuracy assessed to obtain a final accuracy of LR, RF, and DRT models were 

0.94, 0.91, and 0.95, respectively (Chowdhury, S., et al., 2024).    

III. Research Methodology  
The mentioned above material of data sources with their diverse types are 

significantly contributed to apply intelligent algorithm methods such as Machine 

Learning-Artificial Neural Networks (ML-ANN) algorithms and Bivariate Statistical 
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models in mapping landslide susceptibility. The overall methodology of the study is 

presented in (Fig. 2). Methodologically, the study followed several key stages:  

1. Data Sources and Data Input: Identification of various data sources used to 

create the landslide susceptibility map. 

2. Selection of Landslide Conditioning and Indicator Factors: Choosing the 

factors contributing to landslide occurrences. 

3. Creating Landslide Inventory Map: Selection of random samples with 70% of 

training and 30% of testing samples of landslide sites.  

4. Testing Multicollinearity: Assessing Multicollinearity before building the 

predictive models. 

5. Modeling Techniques: Application of the suggested modeling techniques (FR, 

SE, and ML-ANN) to create landslide susceptibility maps (LSMs). 

6. Verification and Testing: Conducting ROC-AUC tests to evaluate the accuracy 

and performance of the suggested predictive models. 

7. Data Outputs and Final Results. 

 

 
Fig. 2 Research schematic flowchart showing proposed methodology to predict the final 

outputs of Land Susceptibility Maps (LSMs) of the study area. 
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IV. Processing and Analyses  

1. Landslide Inventory Map 
The preparation of landslide inventory data is a crucial step in the landslide 

modeling process to build an accurate and effective prediction model for landslides 

(Lee et al. 2020). This is because there is an assumption that past events have a strong 

influence on the future (Zhou et al. 2018). Thus, landslide inventory maps can provide 

useful information regarding the locations of past landslides and may also identify 

areas where future landslides are likely to occur (He et al. 2023).  

With the assistance of remote sensing technologies and field investigations, 

inventory maps can be evaluated more effectively. Based on a comprehensive analysis 

of various datasets, including historical documents, field surveys, interviews with 

some local residents in the study area, and the interpretation of high-resolution 

satellite imagery, a landslide location map was created. 

In this study, the data for spatial prediction was classified into two categories: 

the first category is landslide locations, for which 137 total landslide sites were 

identified for each of training and testing samples (back to Fig. 1 right) to be used in 

building the predictive model for landslide susceptibility (Phong et al. 2020; Azarafza 

et al. 2021). The second category is non-landslide locations, where an equal number of 

sites that have not experienced landslides (areas with a slope angle of less than 2°) 

were identified.  

Using ArcGIS Desktop software ver10.5 and the Geostatistical Analyst 

extension, the data was randomly divided into training datasets 70% of landslides (96 

locations of landslides and 96 locations of non-landslides) to build the landslide 

susceptibility models. The remaining 30% (41 locations of landslides and 41 locations 

of non-landslides) were used as testing data to evaluate the model (back to Fig. 1 

right). 

The training and testing datasets were converted into a raster format. The 

landslide and non-landslide locations were coded with the numbers 1 and 0, 

respectively (Chen et al. 2019). Finally, the training dataset was overlaid with the 

conditioning factors that had been prepared in advance to extract the descriptive 

values for each factor. 

2. Selection of Landslide Conditioning Factors 
Landslides occur as a result of the influence of a set of selected factors, which 

serve as inputs for creating susceptibility maps for any region. In this study, eighteen 

landslide conditioning factors were extracted, categorized into topographical, 

geological, hydrological, environmental and anthropogenic factors, to evaluate the 

spatial prediction of landslides in the study area.  

The selected factors include several continuous variables (altitude, slope angle, 

slope aspect, slope length, Topographic Position Index (TPI), Terrain Ruggedness 

Index (TRI), Topographic Wetness Index (TWI), general curvature, plane curvature, 

profile curvature, lithology, rainfall, NDVI), while others are categorical variables 

(LULC, distance from streams, distance from roads, distance from faults, 

geomorphological landform patterns) (Table 1; Fig. 3, 4, and 5). Below is a 

description of these factors on details: 
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Table 1: Spatial relationship between each conditioning factor and landslide occurrence 

using FR and SE models 
 Conditioning 

 factors 
 Classes 

Class 

pixels 
Pixels (%) landslide 

Landslide 

 pixel % 
FR RFi=Pij Wj, FR Pj Wj, SE 

Altitude 

< 500 4042 0.20 0 0.00 0.000 0.000 

2.917 

0.000 

0.037 

500 - 1000 128693 7.10 41 29.90 4.214 0.663 -0.361 

1000 - 1500 479399 26.50 34 24.80 0.938 0.148 -0.346 

1500 - 2000 748666 41.30 54 39.40 0.954 0.150 -0.367 

2000 - 2500 430853 23.80 8 5.80 0.246 0.039 -0.166 

> 2500 (m) 20582 1.10 0 0.00 0.000 0.000 0.000 

Slope angle 

0 - 2 (degree) 15182 0.80 0 0.00 0.000 0.000 

4.174 

0.000 

0.070 

2 - 5 32233 1.80 0 0.00 0.000 0.000 0.000 

5 - 10 91325 5.00 0 0.00 0.000 0.000 0.000 

10 - 18 273172 15.10 0 0.00 0.000 0.000 0.000 

18 - 30 800952 44.20 6 4.40 0.099 0.003 -0.137 

30 - 45 578802 31.90 77 56.20 1.760 0.048 -0.324 

45 - 67 20569 1.10 54 39.40 34.728 0.949 -0.367 

Slope-Aspect 

Flat 6485 0.40 0 0.00 0.000 0.000 

1.523 

0.000 

0.027 

North 180717 10.00 6 4.30 0.844 0.101 -0.157 

Northeast 201093 11.10 21 15.30 1.381 0.164 -0.287 

East 231694 12.80 51 37.20 2.912 0.346 -0.368 

Southeast 240987 13.30 26 19.00 1.427 0.170 -0.315 

South 243265 13.40 5 3.60 0.272 0.032 -0.121 

Southwest 296872 16.40 10 7.30 0.446 0.053 -0.191 

West 236572 13.10 12 8.80 0.671 0.080 -0.213 

Northwest 174550 9.60 6 4.40 0.455 0.054 -0.137 

slope length 

0 - 5  (m) 1634013 90.20 91 66.40 0.737 0.048 

1.000 

-0.272 

0.046 

5 - 15 84681 4.70 19 13.90 2.968 0.195 -0.274 

15 - 30 66551 3.70 20 14.60 3.975 0.261 -0.281 

30 - 45 23836 1.30 6 4.40 3.330 0.219 -0.137 

> 45 3154 0.20 1 0.70 4.194 0.276 -0.036 

TPI 

< -50 358142 19.80 3 2.20 0.111 0.018 

1.977 

-0.084 

0.016 

-50 :-10 497711 27.50 15 10.90 0.399 0.065 -0.242 

-10 : 30 437014 24.10 33 24.10 0.999 0.164 -0.343 

30 : 70 305721 16.90 40 29.20 1.731 0.284 -0.359 

>70 213647 11.80 46 33.60 2.848 0.468 -0.366 

TRI 

< 0.04 1493161 82.40 34 24.80 0.301 0.010 

2.573 

-0.346 

0.040 

0.04 - 0.08 280600 15.50 75 54.70 3.536 0.115 -0.330 

0.08 - 0.12 35384 2.00 24 17.50 8.972 0.291 -0.305 

0.12 - 0.16 2929 0.20 4 2.90 18.065 0.585 -0.103 

> 0.16 161 0.00 0 0.00 0.000 0.000 0.000 

landform  

patterns 

Pit 53621 3.00 0 0.00 0.000 0.000 

2.189 

0.000 

0.078 

valley 207513 11.50 0 0.00 0.000 0.000 0.000 

footslope 831 0.00 0 0.00 0.000 0.000 0.000 

shoulder 339 0.00 0 0.00 0.000 0.000 0.000 

hollow 354788 19.60 0 0.00 0.000 0.000 0.000 

spur 320962 17.70 5 3.60 0.206 0.020 -0.121 

Peak 10459 0.60 4 2.90 5.059 0.498 -0.103 

Ridge 118520 6.50 28 20.40 3.125 0.307 -0.325 

Slope 745202 41.10 100 73.00 1.775 0.175 -0.230 
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Table 1: Continued. 
 Conditioning 

 factors 
 Classes 

Class 

pixels 
Pixels (%) landslide 

Landslide 

 pixel % 
FR RFi=Pij Wj, FR Pj Wj, SE 

General 

Curvature 

Flat 346415 19.10 10 7.30 0.382 0.142 

2.212 

-0.191 

0.035 Convex 724946 40.00 95 69.30 1.733 0.645 -0.254 

Concave 740874 40.90 32 23.40 0.571 0.213 -0.340 

Plan 

 Curvature 

Flat 146883 8.10 0 0.00 0.000 0.000 

2.689 

0.000 

0.048 Convex 848390 46.80 85 62.00 1.325 0.612 -0.296 

Concave 816962 45.10 52 38.00 0.842 0.388 -0.368 

Profile  

Curvature 

Flat 107663 5.90 0 0.00 0.000 0.000 

3.238 

0.000 

0.056 Convex 881894 48.70 38 27.70 0.570 0.264 -0.356 

Concave 822678 45.40 99 72.30 1.592 0.736 -0.235 

Lithology 

Sabya Group (sa) 265542 14.70 0 0.00 0.000 0.000 

4.398 

0.000 

0.122 

Jiddah Group (jt)  7892 0.40 0 0.00 0.000 0.000 0.000 

Baish Group (ba) 155800 8.60 0 0.00 0.000 0.000 0.000 

Bahah Group (bt) 1358039 74.90 137 100.00 1.334 1.000 0.000 

Sabya Group (sa) 24962 1.40 0 0.00 0.000 0.000 0.000 

Distance from 

 Faults 

0 - 750 (m) 686984 37.90 112 81.80 2.157 0.705 

3.100 

0.000 

0.084 

750 - 1500 486738 26.90 20 14.60 0.544 0.178 0.000 

1500 - 2250 301717 16.60 2 1.50 0.088 0.029 -0.036 

2250 - 3000 183312 10.10 2 1.50 0.144 0.047 -0.062 

3000 - 3750 103700 5.70 1 0.70 0.128 0.042 -0.062 

3750 - 4500 44669 2.50 0 0.00 0.000 0.000 -0.281 

> 4500 5115 0.30 0 0.00 0.000 0.000 -0.165 

TWI 

< 4 314494 17.40 105 76.60 4.416 0.919 

4.040 

-0.204 

0.080 

45447 1082456 59.70 32 23.40 0.391 0.081 -0.340 

45510 305013 16.80 0 0.00 0.000 0.000 0.000 

45573 60650 3.30 0 0.00 0.000 0.000 0.000 

> 10 49622 2.70 0 0.00 0.000 0.000 0.000 

Distance from 

 Streams 

0 - 100 561955 31.00 28 20.40 0.659 0.119 

1.064 

  

0.026 

100 - 200 457820 25.30 44 32.10 1.271 0.230 0.000 

200 - 300 355886 19.60 36 26.30 1.338 0.242 -0.062 

300 - 400 234292 12.90 21 15.30 1.186 0.214 -0.137 

400 - 500 141133 7.80 6 4.40 0.562 0.102 -0.287 

500 - 600 51540 2.80 2 1.50 0.513 0.093 -0.351 

> 600 9609 0.50 0 0.00 0.000 0.000 -0.365 

Rainfall 

200 - 250 (mm) 17812 1.00 0 0.00 0.000 0.000 

2.007 

0.000 

0.044 
250 - 300 254437 14.00 9 6.60 0.468 0.176 -0.179 

300 - 400 783645 43.20 72 52.60 1.215 0.456 -0.338 

400 - 500  756341 41.70 56 40.90 0.979 0.368 -0.366 

LULC 

Built up area 61223 3.40 1 0.70 0.216 0.087 

2.292 

-0.036 

0.087 
Roads 89753 5.00 4 2.90 0.590 0.238 -0.103 

Vegetation 555154 30.60 8 5.80 0.191 0.077 -0.166 

Bare ground 1106105 61.00 124 90.50 1.483 0.598 -0.090 

NDVI 

-0.0214 - 0.0717 377596 20.80 35 25.50 1.226 0.320 

1.534 

-0.349 

0.037 

0.0717 - 0.0906 637563 35.20 69 50.40 1.432 0.373 -0.345 

0.0906 - 0.1109 424058 23.40 30 21.90 0.936 0.244 -0.333 

0.1109 - 0.1365 285094 15.70 2 1.50 0.093 0.024 -0.062 

0.1365 - 0.3229 87924 4.90 1 0.70 0.150 0.039 -0.036 

distance from 

 Roads 

0 - 1000  (m) 547384 30.20 91 66.40 2.199 0.586 

2.576 

0.000 

0.067 

1000 - 2000 437370 24.10 35 25.50 1.059 0.282 0.000 

2000 - 3000 338536 18.70 8 5.80 0.313 0.083 0.000 

3000 - 4000 216512 11.90 3 2.20 0.183 0.049 -0.084 

4000 - 5000 126535 7.00 0 0.00 0.000 0.000 -0.166 

5000 - 6000 89032 4.90 0 0.00 0.000 0.000 -0.349 

> 6000 56866 3.10 0 0.00 0.000 0.000 -0.272 
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Fig. 3. Landslide conditioning (Topographical) factors: (a) Altitude, (b) Slope angle, (c) 

Slope-Aspect, (d) Slope Length (LS), (e) Topographic Position Index (TPI), (f) Terrain 

Ruggedness Index (TRI). 
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Fig. 4. Landslide conditioning (Topographical & Geological) factors: (a) landform Patterns, 

(b) General Curvature, (c) Plan Curvature, (d) Profile Curvature, (e) Lithology, (f) Distance 

from Fault. 
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Fig. 5. Landslide conditioning (Hydrological & Environmental) factors: (a) Topographic 

Wetness Index (TWI), (b) Distance from streams, (c) Rainfall, (d) Land use/land cover 

(LULC), (e) Normalized Difference Vegetation Index (NDVI), (f) Distance from roads. 
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2.1. Topographical Factors 

2.1.1. Altitude  
Altitude is one of many topographical factors that influence slope stability and, 

consequently, leads to landslides (Hong et al., 2018; Feizizadeh et al. 2014). In this 

study, altitude values ranged from 415 to 2661 meters above sea level. This altitude 

was categorized into six classes: (415 - 500), (500 - 1000), (1000 - 1500), (1500 - 

2000), (2000 - 2500) meters, and (> 2500 m), as illustrated in (back to Fig. 3a). 

2.1.2. Slope Angle 
The slope angle is one of the most influential factors in landslide assessments 

(Hong et al., 2018; Nguyen et al., 2019), with landslides occurring more frequently on 

steeper slopes (Poudel et al., 2016). Areas susceptible to landslides are characterized 

by steep slopes that contribute to the instability of the underlying rock and soil (Jebur 

et al., 2014). Additionally, slope plays a vital role in subsurface flow and affects soil 

moisture, which is directly related to landslide occurrence. In this study, slope degree 

values ranged from 0 to 66.3 degrees, and the slopes were classified into seven 

categories according to Young's classification (Young, A., 1972) (back to Fig. 3b). 

2.1.3. Slope Aspect 
The slope aspect refers to the direction of maximum change in value from each 

cell to its neighbors (Al‐Najjar et al., 2019). It is also one of the most important 

factors influencing landslide occurrence due to the varying moisture levels across 

different aspects (Pham et al., 2018). The slope aspect affects various processes that 

have direct and indirect impacts on landslides, including wind direction, rainfall, 

sunlight exposure, hydrological processes, evaporation, transpiration, soil moisture 

concentration, and vegetation cover (Devkota et al., 2013). Furthermore, the slope 

aspect significantly influences the distribution of landslide types. In this study, a raster 

layer indicating the slope aspect of the study area was derived from a 12.5-meter 

Digital Elevation Model (DEM) and classified into nine categories with values: (-1), 

(0–22.5 degrees, 337.5–360 degrees), (22.5–67.5 degrees), (67.5–112.5 degrees), 

(112.5–157.5 degrees), (157.5–202.5 degrees), (202.5–247.5 degrees), (247.5–292.5 

degrees), and (292.5–337.5 degrees) representing flat, north (N), northeast (NE), east 

(E), southeast (SE), south (S), southwest (SW), west (W), and northwest (NW), 

respectively (back to Fig. 3c). 

2.1.4. Slope Length (LS) 
The slope length; sometimes Length of Slope (LS) is also one important 

topographical factors influencing landslide susceptibility. Slope length, in conjunction 

with slope angle, affects soil loss and hydrological processes in mountainous areas 

(Pourghasemi and Rahmati, 2018). In the current study, the LS factor was derived 

from the Digital Elevation Model (DEM) using the SAGA software according to the 

following equation (Eq. 1) (Moore and Burch, 1986). In this study, the LS values 

range from 0 to 312.27 meters and were classified into five categories as follows: 

(>45), (30-45), (15-30), (5-15), and (0-5) (back to Fig. 3d). 

https://mkgc.journals.ekb.eg/


Journal homepage: https://mkgc.journals.ekb.eg / 
ISSN: 2357-0091 (Print) 2735-5284 (Online) 

ة   -مجلة مركز البحوث الجغرافية والكارتوجرافية    128 م2024لعام  39العدد  -مجلة علمية مُحَكمَّ

 

  

2.1.5. Topographic Position Index (TPI) 
Topography is defined as specific geomorphological features on the earth's 

surface, ranging from large-scale features such as plains and mountain ranges to 

secondary features like hills and valleys (Jenness, 2010). Weiss and Jenness 

introduced a new application in Geographic Information Systems for the automated 

classification of topography known as the Topographic Position Index (TPI) (Weiss, 

2001; Jenness, 2006). This index determines the position of a point within the context 

of its surrounding topography, indicating whether the point is in a valley, on a ridge, 

or on a slope. 

Since the establishment of the Topographic Position Index (TPI) by Weiss and 

Jenness, the TPI has been used at various levels to classify landscapes into both slope 

position categories: (valley, lower slope, flat slope, typical slope, model slope, upper 

slope, ridge, hill) and landform categories: (channels/gorges, drainage, upland 

drainage, high drainage, shallow valleys,  U-shaped valleys, plains, canyons / deeply 

incised streams, mid-slopes, open slopes, upper slopes, open slopes, local hills, hills in 

valleys, middle hills, small hills in the plain,  plains, mountain peaks , local ridges, 

mid-slope ridges and high ridges) (Jenness, 2007). The Topographic Position Index 

(TPI) provides useful information about the landscape's topographic features that are 

used to assess landslide risks. The Topographic Position Index (TPI) can be calculated 

by using the following equation (Eq. 2): 

 

 

SAGA GIS was used to calculate the TPI, and the values of the index ranged from (-

157.64 to 208.95). These values were classified into five categories as follows: (< -

50), (-50 to -10), (-10 to 30), (30 to 70), and (> 70). (back to Fig. 3e) 

2.1.6. The Terrain Ruggedness Index (TRI) 
It is used to describe the terrain as either smooth or rugged, as well as the local 

variation in slopes or surface curvature (Dahal et al. 2008). TRI is also defined as the 

difference in elevation between adjacent pixels (Al-Najjar and Pradhan 2021). Terrain 

Ruggedness Index was calculated by using the following equation (Eq. 3): 

(Eq. 1)  

 

(Eq. 2) 
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Where is the elevation of the cell, and α and β are the indices representing the cell and 

its eight neighboring cells (Riley et al. 1999). 

The TRI values were derived using SAGA GIS, and the TRI was divided into 

five categories as follows: (0-0.04), (0.04-0.08), (0.08-0.12), (0.12-0.16), and (>0.16) 

(back to Fig. 3f). The geomorphology of the area affects the occurrence of landslides, 

and it is taken into account in many sensitivity studies such as monitoring wildfires, 

landslide susceptibility, or hydrology (Pham et al., 2019). 

 2.1.7. The Geomorphological Landform Patterns 

Recently, the landform patterns are classified using an innovative method 

introduced by Jasiewicz and Stepiski (2013) known as Geomorphic; this algorithm 

classifies landscapes by categorizing 498 unique geomorphological patterns based on 

elevation differences within the area surrounding the target cell (Fig. 6). In this study, 

the geomorphic algorithm integrated into SAGA GIS was used to classify landform 

patterns into 10 different landform types, outputting them in raster format as follows: 

Flat, Peak, Ridge, Shoulder, Spur, Slope, Hollow, Foot slope, Valley, and Pit 

(Depression) (Jasiewicz and Stepiski, 2013) (back to Fig. 4a). 

2.1.8. Curvature (General, Plan, and Profile) 
General, Plan, and Profile Curvature are fundamental terrain variables that have 

a direct impact on the acceleration and deceleration of surface runoff and the 

deposition of materials by managing the speed of material movement on a slope (Xiao 

et al., 2019; Aghdam et al., 2016). This, in turn, affects the occurrence of landslides 

(Pham et al., 2018).  

In this study, the layers for General, Plan, and Profile Curvature were derived 

from the DEM using ArcGIS Ver10.5 software. The curvatures were classified into 

three categories: negative curvature (Concave) (<-0.05), zero curvature (Flat) (-0.05 to 

0.05), and positive curvature (Convex) (>0.05) (Nohani et al., 2019). The values for 

General Curvature ranged from (-23.04 to 17.92), Plan Curvature from (-10.2336 to 

10.6918), and Profile Curvature from (-10.5108 to 12.9354) (back to Fig. 4b, c & d). 

 
Fig. 6. A Geomorphic line of sight concept. Symbolic 3D morphologies and their 

corresponding Geomorphic (ternary patterns) for the 10 most common patterns found in 

nature. Figure after Jasiewicz and Stepinski (2013). 

(Eq. 3)  
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2.2 Geological Factors 

2.2.1. Lithology 
Lithology is the primary factor that directly influences the development of 

landslides in a specific area (Abedini et al., 2019; Tian et al., 2019) and contributes to 

the mapping of landslide susceptibility. Variations in lithology significantly impact 

different types of geographical hazards, such as landslides (Mekonnen et al., 2022). 

These geological units differ in physical and mechanical properties, including type, 

strength, weathering degree, durability, density, and permeability (Shano et al., 2021). 

Many researchers have used lithology in landslide studies (Dang et al., 2019; Panchal 

& Shrivastava, 2020, 2021, 2022). However, it requires understanding the nature of 

rock types to identify those that allow water storage in pores, which act as landslide 

factors (Jennifer et al., 2021). In the current study, five geological groups were 

identified as follows (back to Fig. 4e): 

a. Sabya Group (SA):  it consists mainly of Quartz-bearing meta-sedimentary rocks 

consisting of quartzite, quartz pebble conglomerate, argillite, limestone, and 

graywacke; widely converted to micaceous schist. 

b. Baish group (BA): which consists of Greenstone, tholeiitic meta basalt (local 

pillow structures), and minor. metagraywacke, meta chert, and marble. 

c. Bahah group (BT): it consists mainly of Biotite-quartz schist, phyllite, and 

calcareous metagraywacke. 

d. Jiddah Group: (JT): which consists of pillow lava, flow breccia, tuff, dacite tuff, 

interbedded subordinate, often lava carbonaceous conglomeratic gray wacke and 

phyllite. 

e. Granite group (DG): which consists Biotite monzogranite with diorite, gabbro, 

Foliated uniform body of biotite granodiorite and monzogranite. 

2.2.2. Distance from Faults 
Geological variables such as lineaments and faults play a crucial role in the 

occurrence of landslides and are considered when analyzing landslide susceptibility 

because they affect rock stability and encourage landslides (Arabameri et al., 2020). 

Faults have a significant impact on landslides and slope stability because rocks near 

these structures are often fractured, broken, and weathered, resulting in much lower 

engineering properties compared to intact rocks (Miller et al., 2009).  

In this study, faults were extracted from the geological map (scale: 1: 250,000). 

The distance to faults was calculated using the Euclidean distance function in ArcGIS 

10.5. The maximum distance to faults was found to be 4934 meters. The distances 

from faults were classified into seven categories: (0 - 750), (750 - 1500), (1500 - 

2250), (2250 - 3000), (3000 - 3750), (3750 - 4500), (> 4500) (back to Fig. 4f). 

2.3. Hydrological Factors 

2.3.1. Topographic Wetness Index (TWI) 
The Topographic Wetness Index (TWI) is a function of both the slope and the 

contributing area per unit orthogonal to the flow direction. It is an indicator that 

identifies water-saturated areas resulting from runoff under topographic conditions 

(Mitra et al., 2022). Low TWI values are typically associated with steep slopes and 
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efficient drainage systems, while high TWI values indicate high surface saturation 

with gentle slope angles. Increased surface saturation raises the risk of landslides and 

reduces the shear strength of materials on slopes (Zhao and Chen, 2020). 

In our current study, TWI values were calculated using SAGA GIS with the 

following equation (Eq. 4) (Roy and Saha, 2019). The TWI values ranged from 

1.75689 to 23.8445 and were classified into five categories: (< 4), (4 - 6), (6 - 8), (8 - 

10), (> 10) (back to Fig. 5a). 

 

2.3.2. Distance from Streams 
Previous studies have indicated a relationship between drainage density and 

factors such as climate, soil, slope, and geological composition (Nohani et al., 2019). 

Terrain with high drainage density and thin soil layers is typically prone to shallow 

landslides (Paul and Bhowmik, 2016). Additionally, many researches stated that about 

65% of landslides occurred near the first-order drainage network within a distance that 

range from zero to 40 meters. Proximity to watercourses is a crucial factor in mapping 

landslide susceptibility and has been widely used in landslide susceptibility studies 

(Abedi & Feizizadeh, 2021; Moragues et al., 2021; Shano et al., 2021). 

In this study, the drainage network was derived from the ALOS-PALSAR 

digital elevation model using ArcGIS 10.5 with the Hydrology extension. The 

distance from major streams was calculated using the Euclidian distance function in 

ArcGIS 10.5, with the maximum distance to streams being 814.9 meters. The 

distances from streams were classified into seven categories: (0 - 100 meters), (100 - 

200 meters), (200 - 300 meters), (300 - 400 meters), (400 - 500 meters), (500 - 600 

meters), (> 600 meters) (back to Fig. 5b). 

2.3.3. Rainfall 
Rainfall is another significant factor influencing the occurrence of landslides 

due to its direct impact on the stability of surface slopes in a given area (Jennifer et al., 

2021). Moreover, heavy rainfall, whether short-term or long-term, controls surface 

runoff and activates pore water pressure in the soil, leading to soil weakening and 

destabilization of the terrain (Jennifer et al., 2021). Numerous researchers have 

incorporated rainfall data in landslide studies, demonstrating it as a crucial factor in 

landslide occurrences (Gheshlaghi and Feizizadeh, 2021; Hong et al., 2018; Jennifer et 

al., 2021). 

In this study, a raster layer representing rainfall distribution was derived using 

ArcGIS version 10.5 and the spatial interpolation tool. (IDW) Interpolates a raster 

surface from points using an inverse distance weighted (IDW) technique  (back to Fig. 

5c). 

 

(Eq. 4)  
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2.4. Environmental and Anthropogenic Factors 

2.4.1. Land Use/Land Cover (LULC) 
Human activities such as road construction, urban expansion, and infrastructure 

development significantly impact landslides as they alter land use and land cover 

patterns. These activities often require cutting or excavating slopes, which can lead to 

slope instability (Xiao et al., 2019). Land use also influences water infiltration rates 

and, ultimately, the potential for surface accumulation in the soil (Shu et al., 2019). 

Pham et al. (2016) noted that landslides are generally less likely to occur in forested 

areas compared to barren or sparsely vegetated regions. 

Therefore, mapping landslide susceptibility requires an understanding of the 

current land use/land cover (LULC) and how it is being utilized, along with precise 

monitoring over time (Caldwell, 2019). In this study, Landsat 8 (OLI) was processed 

and analyzed to derive the LULC classified layer. The study area was classified into 

four categories: vegetation (30.6%), built-up area (3.4%), roads (5%), and bare ground 

(61% of the total area) (back to Fig. 5d).  

Additionally, the accuracy of the LULC resultant image map was assessed 

using 200 randomly generated points that fall under different LULC categories. The 

classified LULC raster data were compared with a validated reference dataset using 

high-resolution Google Earth images. The relationship between these two datasets was 

evaluated using an error matrix (confusion matrix) and the Kappa coefficient. An 

overall accuracy value above 85% and a Kappa coefficient between 0.7 and 0.8 are 

considered good for validation (Mas et al., 2022). In this study, the overall accuracy 

was 96.5% and the Kappa coefficient was 0.94, indicating a significantly high 

classification accuracy for LULC (Table 2). 

2.4.2. Normalized Difference Vegetation Index (NDVI) 

Natural vegetation is one of the commonly used factors in landslide 

susceptibility analysis, as it helps stabilize slopes and prevent landslides (Liu et al., 

2018). NDVI is a scientific measurement index reflecting the density and vitality of 

vegetation cover, derived from remote sensing (RS) data. It is calculated using the 

difference between the red-spectrum reflection and the near-infrared (NIR) in the 

electromagnetic spectral radiation. Healthy vegetation has a high NDVI value, 

indicating its absorption of red light and reflection of a greater amount of NIR light 

(Gao, 1996). Conversely, areas with low NDVI values indicate bare soil or unhealthy 

vegetation, which may be more prone to landslides due to the lack of stabilizing roots 

(Liu et al., 2018). 

In this study, the Normalized Difference Vegetation Index (NDVI) was 

calculated using 30-meter resolution satellite images from Landsat 8, utilizing Band 4 

(Red) and Band 5 (Near Infrared), captured on April 10, 2023. These images are 

currently available for public download through NASA's Earth Explorer website. The 

selection of satellite images with minimal or no cloud cover (Cloud Cover = 0.07) or 

complete cloud removal was considered, as it is a crucial requirement for calculating 

the NDVI. This index highlights areas with potential landslide hazards (Alvarez-

Mendoza et al., 2019). NDVI can also be combined and infused as a musk band layer  
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Table 2. Accuracy assessment of land use/ land cover (LULC) map using kappa coefficient (k). 

LULC Classes 
 Built up area Roads Vegetation Bare ground Total 

(User) 

User's 

Accuracy   %  

Producer's 

Accuracy  %  1 2 3 4 

Built up area 1 9 1 0 0 10 90.00 90.00 

Roads 2 1 11 0 0 12 91.67 91.67 

Vegetation 3 0 0 60 2 62 96.77 95.24 

Bare ground 4 0 0 3 113 116 97.41 98.26 

Total (Producer)  10 12 63 115 200 
 

 

Overall accuracy  96.50%       

kappa 

Coefficient(k) 
 0.94       

 

with other factors, such as topography and land use, to produce detailed landslide 

hazard maps (Liu et al., 2018). In this study, the NDVI map was derived using the 

Raster Calculator in ArcGIS 10.5 with the following equation (Eq. 5):  

 

Where NIR is the reflectance of Near Infrared spectrum and Red is the reflectance of 

red spectrum. In this study, the NDVI values range from -0.0214 to 0.3229 (Fig. 5e), 

with negative values indicating areas devoid of vegetation and barren regions (such as 

rocky or sandy terrains and even landslide areas), while positive values indicate 

healthy green vegetation (Pradhan et al., 2017). 

2.4.3. Distance from Roads 
The construction of mountain roads is a significant anthropogenic factor 

affecting the stability of natural slopes (Xiao et al., 2019). This is due to the required 

engineering work, such as cutting or excavating slopes, which weaken and destabilize 

them, leading to landslides (Jennifer et al., 2021). Therefore, landslides are often 

distributed near constructed or under-construction roads (Pham et al., 2019). Thus, the 

distance from roads can be considered as a main factor contributing to landslide 

occurrence (Chen et al., 2019; Moragues et al., 2021; Ozioko & Igwe, 2020). In this 

study, a raster layer representing the distance from roads was created using the 

Euclidean distance tool in ArcGIS 10.5 and classified into seven categories. The 

maximum road distance in this study is 7770 meters (back to Fig. 5f).  

3. Multicollinearity Assessment 
Multicollinearity refers to the presence of a high correlation between two or 

more independent variables in a multiple regression model. The fundamental rule in 

selecting independent variables (landslide conditioning factors) is that they should 

exhibit a weak correlation among themselves but a strong correlation with the 

dependent variable (landslide locations). Factors that are highly correlated with each 

other have the same effect and respond in the same manner, which can impact the 

prediction model (Kalantar et al., 2020) and lead to incorrect systematic analysis 

(Dormann et al., 2013). Therefore, testing for the strength of any linear correlation 

(Eq. 5)  
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between two or more independent variables is essential to assess the robustness of the 

landslide model (Nwazelibe et al., 2022). The Variance Inflation Factor (VIF) and 

Tolerance Level (TOL) are commonly used to test for multicollinearity issues. 

The theoretical critical value for the Variance Inflation Factor (VIF) is typically 

5 or 10. Values greater than these indicate a very strong relationship between two or 

more independent variables, suggesting multicollinearity issues. Similarly, the 

theoretical critical value for the tolerance level (TOL) is either 0.1 or 0.2. TOL values 

below 0.2 indicate somewhat weak multicollinearity between the selected independent 

variables, while values below 0.1 indicate strong multicollinearity (Sujatha & Sridhar, 

2021). Multicollinearity is measured using the following equation (Eq. 6):  

 

Where Ri denotes the correlation coefficient when the independent variable Xi is a 

Regression coefficient on the remaining variables 

 

4. Landslide Susceptibility Suggested Models  

4.1. Artificial Neural Network (ANN) Model 
The Artificial Neural Networks (ANN) is a machine learning algorithm that 

mimics the structure of neural networks in the human brain. It has been effectively 

used in the field of landslides and is widely employed to map landslide susceptibility 

(Selamat et al., 2023). The ANN model predicts future landslides based on the 

historical distribution of landslide occurrences, making it a valuable tool for assessing 

the likelihood and risks of landslides. Therefore, this model has been widely used in 

predictive studies of landslides (Hu et al., 2021). The ANN is essentially the 

development of an intelligent mathematical model that mimics human cognition and 

biological neural networks. It consists of interconnected units that form a specific 

structure. The ANN is characterized by its ability to recognize multiple sets of data 

within a wide range of datasets without the need for prior expertise, pre-existing 

knowledge, or a predefined framework for data training (Yao et al., 2008). 

In this study, the back-propagation training algorithm was used as it is one of 

the most commonly employed ANN algorithms by researchers in the field of 

landslides (Zhao et al., 2022). The ANN utilized the multi-layer perceptron (MLP) 

architecture, which includes three components: the input layer, the hidden layer, and 

the output layer. The input layers are created based on the landslide conditioning 

factors selected for model development. 

The input layer has a dedicated neuron for each landslide conditioning factor, 

which connects to the hidden layers. The hidden layers are intermediate components 

situated between the input and output layers. They receive data from the input neurons 

via interconnections, process this data, make predictions about the output neurons, and 

then transfer it to the output layer through these interconnections. The output layer 

represents the landslide predictions, which were used in this study to classify areas 

prone to landslides and areas that are not. The proposed designed structure of the 

model is shown in (Fig. 7) 

(Eq. 6)  
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4.2. Frequency Ratio (FR) Model 
The frequency ratio (FR) is one of the most commonly used bivariate statistical 

analysis methods for assessing landslide susceptibility (Zhang et al. 2020). The FR 

method is characterized by its ease of implementation, compatibility with Geographic 

Information System (GIS) technology, and its ability to provide accurate results. The 

application of the FR method relies on the assumption of all future events can be 

predicted based on past information (Chimidi et al., 2017). The FR value is calculated 

by dividing the ratio of the area where landslides have occurred by the total study 

area. It also represents the ratio of the likelihood of landslide occurrence to non-

occurrence within different classification categories for each landslide susceptibility 

assessment factor, thereby measuring the influence of each factor on landslides 

(Regmi et al. 2014). Generally, a ratio greater than one indicates a strong relationship 

between the conditioning factor and landslides, suggesting a high likelihood of 

landslide occurrence. Conversely, values less than one indicate a low relationship with 

the probability of landslides, while a value of one signifies a neutral relationship for 

landslide occurrence in the overall area. The FR value can be calculated using the 

following equation (Eq. 7): 

 

 

Where FRi = frequency ratio of ith class, LSi = total landslide area (number of 

landslide pixels) in the ith class, LS = total landslide area (total number of landslide 

pixels) in the study area, Ai = area falling under ith class (total number of pixels of ith 

class) and A = total area (total number of pixels of the entire map). 

These FR values of different classes of the conditioning factors (back to Table 

1) are then used to obtain the prediction rate (PR) of each factor which depicts the 

weightage of the individual class, using Eq. (8-10) as follows: 

 

 

Fig. 7. The basic proposed designed structure of Machine Learning 

MLP-ANN of landslide susceptibility mapping of the study area. 
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(Eq. 7)  

 

(Eq. 8)  
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Where RF is the relative frequency, MAX (RFi, j) is the maximum value of RF of jth 

factor, MIN(RFi, j) is the minimum value of RF of jth factor, PRj is the prediction rate 

of jth factor. The FR values obtained by using Eq. (8) will act like the weight of each 

class (wij, FR), and PRj is converted to a percentage, which will be the weight of the 

jth factor, i.e. Wj, FR. To generate the landslide susceptibility index (LSI) using the 

FR method, the weightage to each class of every landslide conditioning factor is given 

as per the corresponding FR values obtained by Eq. (8) and then integrated with the 

corresponding weight of each element. Named after Claude Shannon, the Shannon 

Entropy (SE) Model is one of the most efficient bivariate statistical methods that used 

to measure the influence of conditioning factors on slope instability and landslide 

occurrence. It examines the relationship between the likelihood of landslides and their 

causative factors, as well as the categories of those factors. This technique has the 

advantage of allowing for the weighting of the factors and their categories (Constantin 

et al. 2011; Jaafari et al. 2014). The larger the SE index, the more significant the 

contributing factor to landslide occurrence (Sujatha, 2012). The SE value is calculated 

using the following equations (Eq. 11-13):  

 

where m is the number of landslides that have occurred, and FR is the frequency ratio. 

As a result, the normalized decision matrix Pij can be defined as follows (Eq. 12) for 

each landslide criterion: 

 

where Ej is the entropy value, Pij is the value of the ith landslide  in the jth criterion, 

and k is a positive instant given as  (lnm)−1. The weights (Wj) were assigned to the 

roles of the  variables influencing the synthesis grade, with higher scores  indicating 

greater significance of the variable's contribution  within the rating scheme. Where Vj 

is defined 1 − Ej. The  weights were calculated by using (Eq. 13). 

 

Validating predictive models is an essential part of landslide susceptibility 

research (Hong et al. 2018; Pourghasemi & Rossi. 2017). A landslide susceptibility 

map becomes ineffective without model validation (Mersha and Meten, 2020; Pham et 

al. 2017). There are several statistical measures to evaluate the performance of 

(Eq. 9)  

 

(Eq. 10)  

 

(Eq. 11)  

 

(Eq. 12)  

 

(Eq. 13)  
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predictive landslide models, including: Receiver Operating Characteristic Curve 

(ROC) and Area Under the Curve (AUC)  ,landslide Relative Density Index (R-index), 

a Model -Success and Predictive Rate Curve. the sensitivity, specificity, accuracy, 

positive predictive value (PPV), negative predictive value (NPV), and kappa statistics 

(Azemeraw, 2021; Selamat, 2022).  

This research study employs the ROC_AUC model to evaluate the performance 

of landslide susceptibility maps (LSM) derived from the FR, ANN, and SE models. 

AUC is one of the most widely used metrics for assessing the performance of 

predictive models (Zhao et al. 2022; Sengupta & Nath, 2022; Tingyu & Nath, 2022). 

Additionally, AUC represents a graph between the success rate curve, indicating the 

model's ability to classify areas into categories at risk of landslides using the training 

dataset, and the prediction rate curve, reflecting the model's ability to predict future 

landslide occurrences using validation data (Kalantar et al. 2018). The ROC graph was 

plotted using the "Calculate ROC Curves and AUC Values" tool from the ArcSDM5 

toolbox (Mas et al. 2013). AUC values range from 0.5 to 1, and they are classified as 

follows: excellent (0.9-1.0); very good (0.8-0.9); good (0.7-0.8); average (0.6-0.7), 

and fair (0.5-0.6) (Yesilnacar& Topal. 2005). Eventually, AUC_ROC resultant values 

that are close to 1 indicate more accurate and reliable predictions in model 

performance, while the model is considered weak when the resultant values are less 

than or equal to 0.5 (Mfondoum et al., 2023). The AUC value can be calculated using 

the following equation (Eq 14): 

 

where TP (true) and TN (true negative) denote the correctly classified raster cells, P 

expresses the total number of landslide raster cells, and N represents the total number 

of non-landslide raster cells. 

V. Results and Discussion 

1. Multicollinearity Analysis 
The Variance Inflation Factors (VIF) and Tolerance Level (TOL) indicators 

were used to detect and measure multicollinearity among the eighteen landslide 

conditioning factors. The VIF and TOL values were calculated using SPSS (Table 3). 

The results of the analysis showed that all VIF values were below the critical 

threshold, with the highest VIF value being 5.76 and the lowest being 1.29. Regarding 

TOL values, all were above the critical threshold, with the highest and lowest TOL 

being 0.77 and 0.17 for the lithology and landform patterns factors, respectively. This 

indicates that the multicollinearity assessment for the eighteen specified factors met 

the critical thresholds. Therefore, none of the identified conditioning factors for 

building the landslide prediction model exhibited multicollinearity. 

 

 

(Eq. 14)  
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Table 3. Variance Inflation Factors (VIF) and Tolerance (TOL) analysis. 

Conditioning Factors 
Multicollinearity analysis 

Tolerance VIF 

Altitude 0.391 2.556 

Slope angle 0.210 4.772 

Slope-Aspect 0.762 1.312 

slope length 0.698 1.433 

TPI 0.193 5.176 

TRI 0.673 1.486 

landform patterns 0.174 5.760 

General Curvature 0.702 1.424 

Plan Curvature 0.654 1.529 

Profile Curvature 0.564 1.772 

Lithology 0.770 1.299 

Distance from Fault 0.637 1.569 

TWI 0.207 4.836 

Distance from Stream 0.317 3.153 

Rainfall 0.589 1.697 

LULC 0.629 1.589 

NDVI 0.646 1.547 

distance from Road 0.581 1.721 

 

2. Resultant Landslide Susceptibility Predictive Models  

2.1. Integrating GIS with ML-Artificial Neural Networks (ML-ANN) 
Understanding the factors causing landslides is crucial for efficiently managing 

their risks. Therefore, landslide studies are essential for improving landslide 

prevention and risk assessment. The landslide predictive model using the Machine 

Learning Artificial Neural Networks (ML-ANN) serves as a valuable intelligent 

modeling approach for identifying at-risk areas and predicting the likelihood of 

landslides. This model has been used by many researchers as a reliable predictive 

modeling algorithm (Jacinth Jennifer & Saravanan, 2022; Orhan et al., 2022; Mehrabi 

& Moayedi, 2021). 

In this study, an approach of integrating Geographic Information Systems 

(GIS) with ML-ANN was employed to make predictions for the landslide model. This 

approach relied on pre-prepared spatial information as landslide causative factors, 

along with inventory data of past and present landslides, which are considered the best 

indicators for future predictions (Ma et al., 2021). Upon reviewing the literature on 

landslide studies, 18 factors influencing the occurrence of landslides were selected. 

These factors are: (Altitude, Slope angle, Slope-Aspect, slope length, TPI, TRI, 

landform patterns, “General, Plan and Profile Curvature”, Lithology, Distance from 

Fault, TWI, Distance from Stream, Rainfall, LULC, NDVI, distance from Road) 

(Back to Fig. 3, 4 and 5).  

The final results indicated that the conditioning factors such as slope angle, 

slope aspect, landform patterns, distance from streams, distance from roads, TPI, 

lithology, slope length, and TWI were the most significant factors influencing the 

occurrence of landslides. Conversely, general curvature and rainfall were identified as 

the least important factors for landslide occurrence in the study area (Fig. 8a). 
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Fig. 8. Importance of influencing factors differentiation according to the examined three 

landslide utilized predictive modeling approaches (a) ANN, (b) FR and (c) SE. 

(a) 

(b) 

(c) 
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According to ranking the resultant influence importance of the selected 

landslide conditioning factors that have been extracted and analyzed in an integrated 

GIS/ML-ANN method, the first ranking factor is the slope angle which is the most 

significant factor influencing landslides in Wadi Dil’ah basin.  

An increase in slope angle leads to the instability of rock and soil masses (Jebur 

et al., 2014), making it a widely used factor in landslide studies. The results indicated 

that slope aspect is the second important ranking factor that effects landslide 

occurrence, as it affects various processes that have direct and indirect impacts on 

landslides, such as wind directions, rainfall, vegetation cover, sunlight exposure, 

evaporation, transpiration, and soil moisture concentration (Devkota et al., 2013).  

The results also showed that landform patterns are the third most important 

ranking factor affecting landslides in the study area. The fourth most important factor 

is the distance from streams, as most landslide incidents in the study area occur in 

mountainous regions and near drainage networks.  

Additionally, the distance from roads is a significant factor contributing to 

landslides. Most landslide incidents in the study area occur in mountainous regions 

and near roads. Road construction in mountainous areas negatively impacts slope 

stability because it always imposes an engineering load and damages the slope 

structure (Tien Bui et al., 2016). Therefore, any road construction activities involving 

the cutting of slopes steeper than 10 degrees cause soil and rock disruptions (Nohani 

et al., 2019), leading to landslides. 

 

2.2. Frequency Ratio (FR) Model 
As it is displayed in Table 1, the results demonstrated the spatial relationship 

between landslide locations and their causative factors using the Frequency Ratio (FR) 

model. The results indicated that lithology is the most influential factor in landslide 

occurrences (Fig. 8b), with a relative impact value of FR equal to 4.40. In terms of 

geological formations, the Bahah Group has an FR value of 1.334, while the other 

formations have zero values. This is attributed to the predominance of these 

formations in the study area, as they constitute 74.9% of the total area of Wadi Dil'ah 

basin. Additionally, many steep roads have been constructed through these units 

without any engineering specifications, and numerous landslides have been recorded 

along their lengths. Furthermore, these units are located in areas characterized by high 

and steep cliffs. 

The slope angle factor ranked second in terms of relative impact, with a value 

of 4.17. The slope category of (45 – 67) degrees recorded an FR value of 34.73, 

followed by the slope category of (30 – 45) degrees with an FR value of 1.76, while 

the remaining categories recorded values below one. The TWI index ranked third with 

an FR value of 4.04, indicating that the category of TWI greater than 10 has the 

highest FR value of 4.41, while the other categories had values less than one. The 

profile curvature factor ranked fourth with a value of 3.24, where the concave 

category recorded the highest FR value of 1.59, while the Convex and Flat categories 

had the lowest FR values of 0.57 and zero, respectively. The distance from faults 

ranked fifth with a relative weight of 3.10, showing that the distance category of (0-

750 m) recorded the highest FR value of 2.16. The probability of landslide 

occurrences decreases at distances greater than 750 meters, with the categories of 750-
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1500 m recording a FR value of 0.544, followed by 1500-2250 m with 0.144, 2250-

3000 m with 0.128, and 3000-3750 m with 0.088. While the other categories recorded 

zero values, the elevation category of 2000-2500 m had the highest FR value of 4.214, 

followed by the categories of 1000-1500 m (0.954), 1500-2000 m (0.938), and 500-

1000 m (0.246). The elevation categories greater than 2500 m and less than 500 m 

recorded the lowest FR values (0.00). The results also indicate that the FR values for 

elevation categories do not show significant correlations with decreasing elevation in 

the study area. Pachauri and Pant (1992) noted that higher elevations are associated 

with a greater susceptibility to landslides. In the current study, the high FR values may 

be related to areas of steep slopes that are interspersed with many streams and gullies. 

Regarding the plan curvature factor, it had an impact ratio of 2.69. 

The convex category recorded the highest FR value of 1.325, while the concave 

and flat categories recorded the lowest FR values of 0.842 and zero, respectively. 

Regarding the distance from roads, it can be observed that the general trend of FR 

values increases with decreasing distance. The results indicate that roads have a 

significant impact on landslides, primarily due to the rock-cutting processes associated 

with the construction of escarpment roads on slopes in the study area, which have 

weakened the stability of the rocks and consequently led to landslides along the roads.  

As for the TRI index, the relative impact value for this factor was 2.57, with the 

category 0.12-0.16 showing the highest FR value of 18.065, followed by the 

categories 0.08-0.12 and 0.04-0.08, with values of 8.972 and 3.536, respectively, 

while the other categories recorded values less than one. For the LULC factor, bare 

ground had the highest FR value of 1.483, while the remaining LULC patterns 

recorded values less than one, indicating that barren and desolate areas are the most 

susceptible to landslides due to their exposure to erosion and soil moisture (Solaimani 

et al. 2013). 

For the General Curvature factor, the convex category recorded the highest FR 

value of 1.733, followed by the concave category at 0.571, while the flat category had 

the lowest values. Regarding the Landform Patterns factor, the results showed that the 

Summit category had the highest FR value of 5.059, followed by the Ridge and Slope 

categories with values of 3.125 and 1.775, respectively. The Spur category had an FR 

value of 0.206, while the remaining landform patterns recorded zero values. 

Concerning the rainfall factor, the results indicated that the rainfall category of 

300-400 mm recorded the highest FR value of 1.215, followed by the 400-500 mm 

category at 0.979, and the 250-300 mm category at 0.468. The 200-250 mm category 

had a zero value. The results show that heavy rainfall, which frequently occurs along 

the escarpment area at higher elevations, increases the likelihood of landslides. 

Regarding the TPI index, the results showed that the category (>70) had the 

highest FR value of 2.848, followed by the category (30-70) at 1.731, while the 

remaining categories recorded values below one, with the category (<-50) having the 

lowest value of 0.111. Concerning the NDVI index, the values between (0.0717: 

0.0906) and (-0.0214: 0.0717) had the highest FR values of 1.432 and 1.226, 

respectively. This indicates that the categories with high FR values represent barren 

and sparsely vegetated areas, which are more prone to landslides. Abdi et al. (2010) 

pointed out that vegetation can protect slopes by reducing erosion effects, 
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strengthening the soil, enhancing slope stability, and limiting the occurrence of 

landslides. 

Regarding the slope aspect, most landslides occurred in the eastern, southeast, 

and northeast directions. These directions recorded the highest FR values of 2.912, 

1.427, and 1.381, respectively, indicating a higher likelihood of landslide occurrences. 

However, other slope aspect categories recorded values below one, suggesting a lower 

probability of landslides. The high frequency of landslides in specific slope aspect 

directions may be associated with local conditions, such as prevailing wind and storm 

directions, fault orientation, and rock structure. 

Regarding the Distance from the stream factor, the distances between 200-300 

meters, 100-200 meters, and 300-400 meters recorded the highest FR rates, with 

values of 1.338, 1.271, and 1.186, respectively. It is noteworthy that the general trend 

of FR values increases as the distance from water bodies decreases. Therefore, it can 

be said that proximity to streams is one of the most important factors contributing to 

slope instability and the frequency of landslides. 

As for the slope length factor, it ranked last in terms of relative impact (1.0) on 

landslide occurrences. The relationship between slope length and landslide probability 

is evident; the category of slopes greater than 45 meters recorded the highest FR value 

(4.194), followed by the categories of 15-30 meters, 30-45 meters, and 5-15 meters, 

with FR values of 3.975, 3.330, and 2.968, respectively. Meanwhile, the category of 

slopes less than 5 meters recorded the lowest FR value (0.737). In general, the results 

indicate that the trend of FR values increases with increasing slope length. 

2.3 Shannon Entropy (SE) Model 
The Shannon Entropy (SE) method is one of the preferred modeling approaches 

for mapping landslides due to its flexibility and ease of computation. The higher the 

SE value corresponding to a particular factor, the greater the significance of that factor 

and its strong influence on the occurrence of landslides. Conversely, a lower SE value 

indicates a diminished discriminatory power of that factor in the decision-making 

process (Lotfi & Fallahnejad, 2010). 

The weights in the SE Model were calculated based on the values of the 

Frequency Ratio (FR). The results of the SE analysis indicated that the lithology factor 

is the most supportive of landslide occurrence, with a value of (0.122), followed by 

LULC (0.087), distance from faults (0.084), TWI (0.080), landform pattern (0.078), 

slope angle (0.070), and distance from roads (0.067). On the other hand, there are 

factors that have less influence on landslide occurrence compared to the 

aforementioned factors, which are: plan curvature (0.048), slope length (0.046), 

rainfall (0.044), TRI (0.040), altitude (0.037), NDVI (0.037), curvature (0.035), slope 

aspect (0.027), distance from streams (0.026), and finally, the TPI index, which has a 

weight of (0.016), making it the least significant factor in terms of its impact on 

landslide occurrence in the study area (Fig. 8c). 

The subcategories of the factors most influential in landslide occurrence have 

been identified (back to Table 1), where the Pij values for the lithology factor indicate 

that the Bahah Group formation is the most influential on landslide occurrence 

(Pij=1). The Pij values for the LULC factor show that bare ground is the area most 

prone to landslides, with the highest value of (0.598) Pij, followed by roads 
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(Pij=0.238), built-up areas (Pij=0.087), and then vegetation (Pij=0.077). The results 

for the distance from faults indicate that the category (0-750 m) recorded the highest 

Pij values (0.705), followed by the category from 750-1500 m (Pij=0.178), indicating 

a correlational relationship between proximity to faults and landslide occurrence. 

The TWI index recorded the highest Pij values (0.919) for the category (> 10), 

indicating that this range is the most susceptible to landslides, followed by the 

category from 8-10 (Pij=0.081). The results show that the summit has the highest 

probability of landslide occurrence, with a value of (Pij=0.498), followed by the ridge 

(Pij=0.307), slope (Pij=0.175), and spur (Pij=0.020). 

The Pij results revealed that the slope category (45–67) is the most susceptible 

to landslides, with a value of (Pij=0.949), followed by the slope category (30-45) with 

(Pij=0.048) and (18-30) with (Pij=0.003). The Pij values increase as the distance to 

roads decreases, indicating that road construction and vehicle movement contribute to 

the destabilization of rocks, leading to landslides. The highest Pij value (0.586) was 

recorded for the distance category from 0 to 1000 meters, followed by the category 

from 1000-2000 meters (Pij=0.282), the category from 2000-3000 meters (Pij=0.083), 

and the category from 3000-4000 meters (Pij=0.049). 

Regarding profile curvature, it was found that concave (Pij=0.736) has the 

highest impact on the likelihood of landslides, followed by convex (Pij=0.264). The 

Pij values for plan curvature indicate that convex (Pij=0.612) is the most influential 

factor in landslide occurrence, followed by concave (Pij=0.338). The probability of 

landslides increases with the slope length; the category (>45 meters) recorded the 

highest Pij value (0.276), followed by the category between 15-30 meters (Pij=0.261), 

30-45 meters (Pij=0.219), and 5-15 meters (Pij=0.195), while the category (<5 meters) 

recorded the lowest Pij value (Pij=0.048). 

The results show a clear relationship between heavy rainfall and the increased 

likelihood of landslides, with the category of 300-400 mm recording the highest Pij 

value (0.456) for average annual rainfall, followed by the category of 400-500 mm 

(Pij=0.368) and 250-300 mm (Pij=0.176). The TRI results indicate that the category of 

0.12-0.16 had the highest Pij values (0.585), followed by the categories of 0.08-0.12 

(Pij=0.291) and 0.04-0.08 (Pij=0.115), suggesting that landslides are more likely to 

occur in these areas. The highest Pij value (0.663) was found in the altitude category 

of 2000-2500 m, followed by 1000-1500 m (Pij=0.150) and 1500-2000 m (Pij=0.148). 

The arid and sparsely vegetated areas in the NDVI layer represent the most 

susceptible regions for landslides, with the category between (0.0717: 0.0906) 

recording the highest Pij values (0.373), followed by the category (-0.0214: 0.0717) 

(Pij=0.320) and the category (0.0906 - 0.1109) (Pij=0.244). 

Meanwhile, Pij values decrease in the remaining categories, indicating the role 

of dense vegetation in strengthening the soil, protecting slopes, stabilizing them, and 

reducing the likelihood of landslides. For the General Curvature factor, the highest Pij 

value (Pij=0.612) was for convex, followed by concave (Pij=0.213), while the lowest 

value (Pij=0.142) was for flat. The density of landslides increases on slopes facing 

east, southeast, and northeast, with Pij values for these directions being (0.347, 0.174, 

0.164), respectively. Regarding Distance from Stream, the category between 200 and 

300 meters recorded the highest Pij value (0.242), followed by the categories of 100-

200 meters (0.230), 300-400 meters (0.214), 0-100 meters (0.119), 400-500 meters 
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(0.102), and 500-600 meters (0.093). TPI values indicate that the category (>70) has 

the highest Pij value (0.468), followed by the category of 30-70 (0.284), the category 

of -10 to 30 (0.164), the category of -10 to -50 (0.065), and the category (<-50) 

(0.018). 

3. Creating Landslide Susceptibility Maps (LSMs)  

The primary objective of this study is to create comprehensive landslide 

susceptibility maps and evaluate the effectiveness of the Machine Learning Artificial 

Neural Network (ML-ANN) model and Bivariate techniques (FR and SE) in 

predicting landslide susceptibility in Wadi Dil'ah basin study area. To achieve this 

goal, an approach of integrating Geographic Information Systems (GIS) and Remote 

Sensing (RS) with statistical models and artificial machine learning algorithms were 

adopted to produce distinct maps indicating the level of susceptibility to landslides. 

The generated maps have provided valuable insights into the potential 

likelihood of future landslide occurrences. By comparing the maps obtained from the 

three models with the existing landslide data (actual points) and non-landslide data, 

we aimed to assess the performance of each model. To achieve this, a testing dataset 

(comprising 30% of the total landslide inventory and 30% of the total non-landslide 

data) was used. 

To reveal the similarities and differences between the results of the models 

used in the study, the derived maps from the three models were converted to 

standardized values ranging from 0 to 1 using Fuzzy Membership. Following this, the 

derived maps were classified into five categories (very high, high, moderate, low, and 

very low) using the Natural Breaks (Jenks) classification tool in ArcGIS. The low to 

very low sensitivity areas on the maps indicate stable areas not prone to landslides 

(non-landslide areas), while the high to very high sensitivity areas indicate unstable 

regions. 

The stable areas not prone to landslides are represented in the models as 

follows: 65.45% in the ANN model, 35.78% in the FR model, and 31.41% in the SE 

model. The moderate areas are represented as 11.93%, 30.11%, and 28.69%, 

respectively. Meanwhile, the unstable areas output by the ANN model constitutes the 

lowest percentage (22.62%), followed by the FR model (31.11%), with the SE model 

producing the highest percentage (39.90%) (Table 5, Fig. 9). 

The percentage distributions revealed that the different LSM models handle the 

same conditioning factors differently to produce various landslide-prone areas. The 

Machine Learning algorithm (ANN Model) differs from the Bivariate Statistical 

models (FR, SE) in its outputs; it generates a higher number of stable areas and fewer 

unstable areas. In contrast, the statistical models allocate higher percentages to 

unstable areas. Highlighting the low, medium, and high areas, the ANN model reveals 

more consistent patterns in its results when compared to previous landslide incidents, 

while the FR and SE models appear to overestimate the occurrence of landslides. 

4. Validation of Landslide Susceptibility Maps 
Model validation is a crucial step in developing susceptibility maps and 

determining their predictive capabilities for natural hazard management (Alam et al. 
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2024). For this purpose, a dataset was used (70% training data, 30% testing data), 

validated to create an Area Under the Curve (AUC curve). The testing dataset is used  

Table 5. Comparing percentages of pixels in each class of the selected different LSM models. 

 
ANN FR SE 

Class of LS % of Pixel in classes % of Pixel in classes % of Pixel in classes 

Very low 64.30 11.04 10.22 

Low 1.15 24.74 21.19 

Moderate 11.93 30.11 28.69 

High 3.97 22.55 27.71 
Very high 18.65 11.56 12.19 

 
Fig. 9. Resultant Landslide susceptibility maps in Wadi Dil’ah Basin of the selected proposed 

models (a) Artificial Neural Network (ANN), (b) Frequency Ratio (FR), (c) Shannon Entropy 

(SE), (d) Landslide susceptibility class distribution bar chart of the three examined models. 
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for model validation purposes. The Receiver Operating Characteristic curves (ROC) 

demonstrated the relationship between sensitivity and specificity, and the results of the 

ROC-AUC model -statistical measures that evaluate the performance of all examined 

predictive landslide models- showed that the performance of the LSMs models is 

close to each other, with some minor differences. When comparing the validation of 

the training and testing inventory data, the performance accuracy was similar, with the 

AUC values for the testing inventory slightly outperforming the training inventory for 

all models. The ANN model achieved success in terms of training and testing 

accuracy (AUC=0.966, 0.983), followed by the FR model (AUC=0.955, 0.993), and 

the SE model (AUC=0.953, 0.971) (Fig. 10 and 11). 

The training and testing performance for all examined models was found to be 

close, with the difference between the lowest and highest values (ANN, SE) not 

exceeding 1.3% and 2.2%, respectively. The smallest difference in training 

performance was observed between the FR and SE models (0.2%), indicating a high 

degree of similarity between these two models compared to the ANN model. On the 

other hand, the testing performance showed the smallest difference between the ANN 

and FR models (1%), suggesting a similarity between these two models. Although the 

SE model recorded the lowest performance values for both training and testing, it 

cannot be considered significantly different from the ANN and FR models, as the 

slight difference is not of substantial importance. 

Overall, the performance of the ML-ANN model was superior to the bivariate 

statistical models (frequency ratio (FR) and Shannon Entropy (SE) models). It is 

noteworthy that all the models used had an AUC value higher than 0.9, indicating that 

they predict the probability of landslides with excellent reliability. 
 

 
Fig. 10. ROC curve for all the three examined models using the Training Datasets. 
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Fig. 11. ROC curve for all the three examined models using the Testing Datasets. 

VI. Conclusions   
This study employs the Machine Learning Artificial Neural Network (ML-

ANN) model and Bivariate Statistical Models to create a landslide susceptibility map 

for Wadi Dil'ah basin area in Asir region of Saudi Arabia. A total of 137 landslide 

locations were identified and distributed in a 70/30 ratio to form training and testing 

datasets. An equal number of locations that did not experience landslides (non-

landslide areas with slope angles less than 2˚) were also identified. Eighteen 

influential factors contributing to the occurrence of landslides were selected, including 

Altitude, Slope angle, Slope-Aspect, slope length, TPI, TRI, landform patterns, 

“General, Plan and Profile Curvature”, Lithology, Distance from Fault, TWI, Distance 

from Stream, Rainfall, LULC, NDVI, distance from Road. 

Multicollinearity was assessed before building the predictive models. The 

results of the Variance Inflation Factor (VIF) and Tolerance Level (TOL) indicators 

demonstrated that the assessment of multicollinearity for the eighteen selected factors 

met the critical thresholds, indicating no multicollinearity issues among the factors. 

The back-propagation training algorithm and the Multi-Layer Perceptron 

(MLP) architecture were used for the ANN. The results of the ANN indicated that the 

conditioning factors of slope angle, slope aspect, landform patterns, distance from 

streams, distance from roads, TPI, geological factors, slope length, and TWI are the 

most significant factors influencing the occurrence of landslides. 

The results from the Frequency Ratio (FR) analysis indicated that lithology, 

slope angle, TWI, profile curvature, distance from faults, altitude, plan curvature, and 

distance from roads are significant factors. Meanwhile, the results from the Shannon 

Entropy (SE) analysis revealed that lithology, LULC, distance from faults, TWI, 

landform pattern, slope angle, distance from roads, and profile curvature are the most 

influential factors supporting the occurrence of landslides. 

The landslide susceptibility map was categorized into five classes, where the 

low to very low sensitivity areas indicate stable regions that are not prone to landslides 

(non-landslide), while the high to very high sensitivity areas represent unstable 
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regions. The classification was performed using the Natural Breaks (Jenks) tool. The 

results showed that stable and non-landslide areas accounted for (ANN=83.65), 

(FR=43.84), and (SE=34.45). Moderate susceptibility areas were represented by 

(ANN=2.93), (FR=27.85), and (SE=28.51), while unstable areas were indicated by 

(ANN=13.42), (FR=428.57), and (SE=37.03). 

The results of the ROC-AUC model showed that the ANN model outperformed 

both the FR and SE models, recording training and testing accuracies of (AUC=0.966, 

0.983). This was followed by the FR model with (AUC=0.955, 0.993), and then the 

SE model with (AUC=0.953, 0.971), respectively. 

This research utilized a broader range of conditioning factors, resulting in a 

more comprehensive approach to validate landslide susceptibility modeling (LSM). 

As a result, the study provides a framework that assists decision-makers, policy-

makers and planners in effectively managing landslide risks in the region. This can be 

achieved by enhancing drainage infrastructure to manage excess rainfall and thus 

reduce soil saturation, modifying slope angles to mitigate landslide risks, and 

implementing structural reinforcements such as slope stabilization to enhance their 

stability. 

In the future, landslide projects should include raising awareness about early 

warning signs and emergency evacuation procedures. Landslide susceptibility maps 

will support this effort as well. There is a necessity for research and development in 

new technologies especially artificial intelligence and strategies, along with 

collaboration with geological experts, engineers, and local authorities when planning 

and implementing landslide mitigation measures. This study has enhanced landslide 

susceptibility maps and identified high-risk areas in Wadi Dil'ah basin, necessitating 

urgent rehabilitation and management. This valuable information can significantly 

assist decision-makers in making informed decisions regarding infrastructure 

development and urban centers. 
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 :ملخص

 الأرضية في حوض وادي ضلع )السعودية( الانهيارات  حدوث  تقييم قابلية
 عن بعد   والاستشعارنظم المعلومات الجغرافية   أساليب دمج  خلال من

 الاصطناعي  ونهج التعلم الآل   المتغيرات ثنائيالإحصاء و
 

 إعداد 
 يوسفد/ وليد شكري عبد الحميد  

 مصر   ،أسيوط  ،جامعة أسيوط  ،كلية الآداب   ،قسم الجغرافيا ونظم المعلومات الجغرافية
 شكري  أحمد د/ نرمين 

         مصر  ،الجيزة  ،جامعة القاهرة  ،كلية الآداب   ،قسم الجغرافيا
 أ.م.د/ أحمد علي أحمد علي 

 مصر   ،أسيوط  ،جامعة أسيوط  ،كلية الآداب ،  قسم الجغرافيا ونظم المعلومات الجغرافية
 

الانهيارات الأرضية أحد المخاطر الطبيعية التييت تسييبك ال مييير مييا السييرااا وتسييا ر الممتل ييات  ييت تعد   
دميييين تق يييييات نظييييم  الانهيييييارات الأرضييييية  اسيييتخدا  حييييدو  تهييييده هييييسة الدراسييية رلييييا رنتييييا  تييييرا   قا ليييية . العيييالم 

( ML-ANN) الاصيييط ا ية العصيييبية اترييي  لل الآليييت اليييتعلم  نهييينالجغرافيييية والاستريييعار  يييا  عيييد و المعلوميييات 

  ييت حييود وادع ضييل  (SE شييانوا انترو ييت ،FR الت ييرار نس ة) ل موذجت  المتغيرات  ث ا ية  الإحصا ية  والأساليك
ط قيية مييا العوامييع المتعلقيية  الانهيييارات الأرضييية )الارت ييا ،  18تم ر داد    . ت الجزء الج و ت الغر ت ما السعوداة

زاويييية الانريييدار، اتجييياة الانريييدار، طيييو  الم ريييدر، ماشييير الموقييي  الطبيييو را ت، ماشييير و يييورة التسييياري ، أشييي ا  
"التقيييول العيييا  والأ قيييت والعميييودع"، والت يييويا الصيييخرع، المسيييا ة ميييا الصيييدو ، ماشييير الرطو ييية  سيييطلأ الأرد،

الطبييو را ت، المسييا ة مييا المجييارع الما ييية، هطييو  الأمطييار، الغطيياء الأرضييتش اسييتخدا  الأرد، ماشيير الغطيياء 
ال  يياتت، والمسييا ة مييا الطريييف(، ول ريير وايييال الارت اطييات الخطييية المرييتركة  يييا العوامييع المتعلقيية  الانهيييارات 

تييييم تطبيييييف م ر ييييا  (.TOL)وماشيييير الت ييييا ا المسييييمو   (VIF)الأرضييييية، تييييم اسييييتخدا  معامييييع تسييييخم الت ييييا ا
 (VIF)أظهييييييرت نتييييييا ن ماشيييييير  (.AUC)والمسيييييياحة تريييييي  الم ر ييييييا  (،ROC)تصييييييا ل ترييييييغيع المسييييييتقبع 

لمعييييدلات التييييدريك هييييت  AUC ييييد  وجييييود   قيييية تطييييية مرييييتركة  يييييا العوامييييع المختييييارة. وأا نسيييي ة ( TOL)و
( 0.971, 0.993, 0.983) (  ليييا التييييوالت،  ييييت حييييا أا معييييدلات الاتت ييييار هييييت0.953, 0.955, 0.966)

 لييا التييوالت. تييم تصيي يا تريطيية القا لييية ل نهيييارات الأرضييية رلييا تميي    ييات  (ANN, FR, SE)ل ميياذ  
حييدو  تييم حسيياب ال سيي ة الم وييية ل ييع   يية مييا   ييات قا لييية و  ،Natural Breaks (Jenks) toolK اسييتخدا  

ميييا حيييية و  ،ميييا حيييية الدقييية  سيييعاعيييد الأ  ML-ANN ذ و نمييي الانهييييارات الأرضيييية. وكرييي   ال تيييا ن أا أداء 
ليييسا  وصيييا  يييما ا يييوا نميييوذ  م اسيييك لتطبييييف تيييرا   قا ليييية  ،SEو  FRال ميييوذجيا المقارنييية  ال سييي ة ل ييي  ميييا

وال يياحميا  ييت قييرار ومييا المييممو  أا تسييا د نتييا ن هييسة الدراسيية صيي ا  ال  ييت الم طقيية الجبلييية. الأرضيييةالانهيييارات 
 التخفيا ما الانهيارات الأرضية ود  امي ياتها.

 الاصييط ا ية العصييبية الريي  ات ،(LSM) الأرضييية الانهيييارات حييدو  قا لييية تييرا   رسييم  :الكلماا ا الماح ح اا 
(ANN)،  الت ييرار نس ة (FR)،  انترو ييت شييانوا (SE)، الممل يية ،الجغرافييية المعلومييات نظييم  ،الأرضييية الانهيييارات 

 السعوداة.  العر ية
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